Tag: transfer learning

Interactive Segmentation with Prototype Learning for Few-Shot Root Annotation

Abstract: Fine-scale pixel-level annotation of minirhizotron root images is a less common and challenging task. We present an interactive segmentation framework to accelerate root annotation. We leverage the concept of few-shot segmentation so that the pre-trained model can be effectively… Read More

OVERCOMING SMALL DATASETS PUBLISHED IN COMPUTERS AND ELECTRONICS IN AGRICULTURE!

Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger!  Their paper, “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was published in… Read More

OVERCOMING SMALL MINIRHIZOTRON DATASETS ACCEPTED TO COMPUTERS AND ELECTRONICS IN AGRICULTURE!

Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger!  Their paper, titled “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was recently… Read More

Overcoming Small Minirhizotron Datasets Using Transfer Learning

Abstract: Minirhizotron technology is widely used for studying the development of roots. Such systems collect visible-wavelength color imagery of plant roots in-situ by scanning an imaging system within a clear tube driven into the soil. Automated analysis of root systems… Read More