Tag: superpixel


Congratulations to our labmates: Dylan Stewart, Anna Hampton, Alina Zare, Jeff Dale and James Keller!  Their paper, “The Weakly-Labeled Rand Index” was recently accepted to the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). In their paper, the authors introduce… Read More


Abstract: Synthetic Aperture Sonar (SAS) surveys produce imagery with large regions of transition between seabed types. Due to these regions, it is difficult to label and segment the imagery and, furthermore, challenging to score the image segmentations appropriately. While there… Read More

Congratualtions to Guohao Yu for a Successful Proposal Defense!

Congratulations to our labmate Guahao Yu for successfully defending his research proposal!  Defending an oral research proposal is the second of four milestones to completing a Ph.D. at the University of Florida.  Guohao is planning to advance image segmentation techniques… Read More

Multiple-instance learning-based sonar image classification

Abstract: An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the… Read More

Environmentally-Adaptive Target Recognition for SAS Imagery

Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More

Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation

Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More

Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps

Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More

Map-guided Hyperspectral Image Superpixel Segmentation Using Semi-supervised Partial Membership Latent Dirichlet Allocation

Abstract: Many superpixel segmentation algorithms which are suitable for the regular color images like images with three channels: red, green and blue (RGB images) have been developed in the literature. However, because of the high dimensionality of hyperspectral imagery, these… Read More