Tag: multiple instance

Peanut Maturity Classification using Hyperspectral Imagery

Abstract: Seed maturity in peanut ( Arachis hypogaea L.) determines economic return to a producer because of its impact on seed weight, and critically influences seed vigor and other quality characteristics. During seed development, the inner mesocarp layer of the… Read More

Congratualtions to Guohao Yu for a Successful Proposal Defense!

Congratulations to our labmate Guahao Yu for successfully defending his research proposal!  Defending an oral research proposal is the second of four milestones to completing a Ph.D. at the University of Florida.  Guohao is planning to advance image segmentation techniques… Read More

Du Accepted to The 2019 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2019)

Congratulations to Gatorsense alumna, Xiaoxiao Du!  Her paper, titled “Multiple Instance Choquet Integral with Binary Fuzzy Measures for Remote Sensing Classifier Fusion with Imprecise Labels”, was recently accepted for publication with The 2019 IEEE Symposium Series on Computational Intelligence (IEEE… Read More

Multiple Instance Choquet Integral with Binary Fuzzy Measures for Remote Sensing Classifier Fusion with Imprecise Labels

Abstract: Classifier fusion methods integrate complementary information from multiple classifiers or detectors and can aid remote sensing applications such as target detection and hyperspectral image analysis. The Choquet integral (CI), parameterized by fuzzy measures (FMs), has been widely used in… Read More

Developing Spectral Libraries Using Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator

Abstract: Traditional methods of developing spectral libraries for unmixing hyperspectral images tend to require domain knowledge of the study area and the material’s spectra. In this paper, we propose using the Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator (Multi-Target MI-ACE)… Read More

Investigation of Initialization Strategies for the Multiple Instance Adaptive Cosine Estimator

Abstract: Sensors which use electromagnetic induction (EMI) to excite a response in conducting bodies have long been investigated for subsurface explosive hazard detection. In particular, EMI sensors have been used to discriminate between different types of objects, and to detect… Read More

Comparison of Hand-held WEMI Target Detection Algorithms

Abstract: Wide-band Electromagnetic Induction Sensors (WEMI) have been used for a number of years in subsurface detection of explosive hazards. While WEMI sensors have proven effective at localizing objects exhibiting large magnetic responses, detecting objects lacking or containing very low… Read More