Tag: endmember

Peanut Maturity Classification using Hyperspectral Imagery

Abstract: Seed maturity in peanut ( Arachis hypogaea L.) determines economic return to a producer because of its impact on seed weight, and critically influences seed vigor and other quality characteristics. During seed development, the inner mesocarp layer of the… Read More

Du Accepted to The 2019 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2019)

Congratulations to Gatorsense alumna, Xiaoxiao Du!  Her paper, titled “Multiple Instance Choquet Integral with Binary Fuzzy Measures for Remote Sensing Classifier Fusion with Imprecise Labels”, was recently accepted for publication with The 2019 IEEE Symposium Series on Computational Intelligence (IEEE… Read More

Multiple Instance Choquet Integral with Binary Fuzzy Measures for Remote Sensing Classifier Fusion with Imprecise Labels

Abstract: Classifier fusion methods integrate complementary information from multiple classifiers or detectors and can aid remote sensing applications such as target detection and hyperspectral image analysis. The Choquet integral (CI), parameterized by fuzzy measures (FMs), has been widely used in… Read More

Plant species’ spectral emissivity and temperature using the hyperspectral thermal emission spectrometer (HyTES) sensor

Abstract: The thermal domain (TIR; 2.5–15 μm) delivers unique measurements of plant characteristics that are not possible in other parts of the electromagnetic spectrum. However, these TIR measurements have largely been restricted to laboratory leaf level or coarse spatial resolutions… Read More

Developing Spectral Libraries Using Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator

Abstract: Traditional methods of developing spectral libraries for unmixing hyperspectral images tend to require domain knowledge of the study area and the material’s spectra. In this paper, we propose using the Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator (Multi-Target MI-ACE)… Read More

Multiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection

Abstract: The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a… Read More