Tag: segmentation

Overcoming Small Minirhizotron Datasets Using Transfer Learning

Abstract: Minirhizotron technology is widely used for studying the development of roots. Such systems collect visible-wavelength color imagery of plant roots in-situ by scanning an imaging system within a clear tube driven into the soil. Automated analysis of root systems… Read More

Root Identification in Minirhizotron Imagery with Multiple Instance Learning

Abstract: In this paper, multiple instance learning (MIL) algorithms to automatically perform root detection and segmentation in minirhizotron imagery using only image-level labels are proposed. Root and soil characteristics vary from location to location, thus, supervised machine learning approaches that… Read More

Possibilistic fuzzy local information C-means with automated feature selection for seafloor segmentation

Abstract: The Possibilistic Fuzzy Local Information C-Means (PFLICM) method is presented as a technique to segment side-look synthetic aperture sonar (SAS) imagery into distinct regions of the sea-floor. In this work, we investigate and present the results of an automated… Read More

Multiple-instance learning-based sonar image classification

Abstract: An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the… Read More

Environmentally-Adaptive Target Recognition for SAS Imagery

Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More

Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation

Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More

Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps

Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More