PublicationPublication

STATE ESTIMATOR AND MACHINE LEARNING ANALYSIS OF RESIDUAL DIFFERENCES TO DETECT AND IDENTIFY FDI AND PARAMETER ERRORS IN SMART GRIDS

Abstract: In the modern Smart Grid (SG), cyber-security is an increasingly important topic of research. An attacker can mislead the State Estimation (SE) process through a False Data Injection (FDI) on real-time measurement values or they can attack the parameters… Read More

A NETWORK PARAMETER DATABASE FDI CORRECTION PHYSICS-BASED MODEL: A MACHINE LEARNING SYNTHETIC MEASUREMENT BASED APPROACH

Abstract: Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of… Read More

OUTLIER DETECTION THROUGH NULL SPACE ANALYSIS OF NEURAL NETWORKS

Abstract: Many machine learning classification systems lack competency awareness. Specifically, many systems lack the ability to identify when outliers (e.g., samples that are distinct from and not represented in the training data distribution) are being presented to the system. The… Read More

ENSEMBLE CORRDET WITH ADAPTIVE STATISTICS FOR BAD DATA DETECTION

Abstract: Smart grid (SG) systems are designed to leverage digital automation technologies for monitoring, control and analysis. As SG technology is implemented in increasing numbers of power systems, SG data becomes increasingly vulnerable to cyber-attacks. Classic analytic physics-model based bad… Read More

OVERCOMING SMALL DATASETS PUBLISHED IN COMPUTERS AND ELECTRONICS IN AGRICULTURE!

Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger!  Their paper, “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was published in… Read More

ROOT IDENTIFICATION WITH MULTIPLE INSTANCE LEARNING ACCEPTED TO MACHINE VISION AND APPLICATIONS!

Congratulations to our labmates Guohao Yu, Alina Zare and Hudanyun Sheng, as well as collaborators, Roser Matamala, Joel Reyes-Cabrera, Felix Fritschi and Thomas Juenger! Their paper, “Root Identification in Minirhizotron Imagery with Multiple Instance Learning”, was recently accepted to Machine… Read More

OVERCOMING SMALL MINIRHIZOTRON DATASETS ACCEPTED TO COMPUTERS AND ELECTRONICS IN AGRICULTURE!

Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger!  Their paper, titled “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was recently… Read More