Abstract: In the modern Smart Grid (SG), cyber-security is an increasingly important topic of research. An attacker can mislead the State Estimation (SE) process through a False Data Injection (FDI) on real-time measurement values or they can attack the parameters… Read More
PublicationPublication
CROSS-LAYERED DISTRIBUTED DATA-DRIVEN FRAMEWORK FOR ENHANCED SMART GRID CYBER-PHYSICAL SECURITY
Abstract: This paper presents a cross-layer strategy for detecting a variety of potential cyber-attacks on the Smart Grid. While most literature focus on False Data Injection attacks on the measurements taken throughout the Smart Grid, there are many ways in… Read More
A NETWORK PARAMETER DATABASE FDI CORRECTION PHYSICS-BASED MODEL: A MACHINE LEARNING SYNTHETIC MEASUREMENT BASED APPROACH
Abstract: Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of… Read More
NEON TREE CROWNS DATASET
Abstract: The NeonTreeCrowns dataset is a set of individual level crown estimates for 100 million trees at 37 geographic sites across the United States surveyed by the National Ecological Observation Network’s Airborne Observation Platform. Each rectangular bounding box crown prediction… Read More
OUTLIER DETECTION THROUGH NULL SPACE ANALYSIS OF NEURAL NETWORKS
Abstract: Many machine learning classification systems lack competency awareness. Specifically, many systems lack the ability to identify when outliers (e.g., samples that are distinct from and not represented in the training data distribution) are being presented to the system. The… Read More
PLANTS MEET MACHINES: PROSPECTS IN MACHINE LEARNING FOR PLANT BIOLOGY
Abstract: Machine learning approaches are affecting all aspects of modern society, from autocorrect applications on cell phones to self‐driving cars to facial recognition, personalized medicine, and precision agriculture. Although machine learning has a long history, drastic improvements in these application… Read More
ENSEMBLE CORRDET WITH ADAPTIVE STATISTICS FOR BAD DATA DETECTION
Abstract: Smart grid (SG) systems are designed to leverage digital automation technologies for monitoring, control and analysis. As SG technology is implemented in increasing numbers of power systems, SG data becomes increasingly vulnerable to cyber-attacks. Classic analytic physics-model based bad… Read More
OVERCOMING SMALL DATASETS PUBLISHED IN COMPUTERS AND ELECTRONICS IN AGRICULTURE!
Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger! Their paper, “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was published in… Read More
ROOT IDENTIFICATION WITH MULTIPLE INSTANCE LEARNING ACCEPTED TO MACHINE VISION AND APPLICATIONS!
Congratulations to our labmates Guohao Yu, Alina Zare and Hudanyun Sheng, as well as collaborators, Roser Matamala, Joel Reyes-Cabrera, Felix Fritschi and Thomas Juenger! Their paper, “Root Identification in Minirhizotron Imagery with Multiple Instance Learning”, was recently accepted to Machine… Read More
OVERCOMING SMALL MINIRHIZOTRON DATASETS ACCEPTED TO COMPUTERS AND ELECTRONICS IN AGRICULTURE!
Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger! Their paper, titled “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was recently… Read More