Tag: uncertain/imprecise labels

Multiple Instance Dictionary Learning for Beat-to-Beat Heart Rate Monitoring from Ballistocardiograms

Abstract: A multiple instance dictionary learning approach, Dictionary Learning using Functions of Multiple Instances (DLFUMI), is used to perform beat-to-beat heart rate estimation and to characterize heartbeat signatures from ballistocardiogram (BCG) signals collected with a hydraulic bed sensor. DL-FUMI estimates… Read More

Multiple-instance learning-based sonar image classification

Abstract: An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the… Read More

Environmentally-Adaptive Target Recognition for SAS Imagery

Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More

Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation

Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More

Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps

Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More

Multiple Instance Hybrid Estimator for Learning Target Signatures

Abstract: Signature-based detectors for hyperspectral target detection rely on knowing the specific target signature in advance. However, target signature are often difficult or impossible to obtain. Furthermore, common methods for obtaining target signatures, such as from laboratory measurements or manual… Read More

Map-guided Hyperspectral Image Superpixel Segmentation Using Semi-supervised Partial Membership Latent Dirichlet Allocation

Abstract: Many superpixel segmentation algorithms which are suitable for the regular color images like images with three channels: red, green and blue (RGB images) have been developed in the literature. However, because of the high dimensionality of hyperspectral imagery, these… Read More