Abstract: Tree species classification using hyperspectral imagery is a challenging task due to the high spectral similarity between species and large intra-species variability. This paper proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm. MI-ACE estimates a… Read More
Tag: multiple instance
Multi-Resolution Multi-Modal Sensor Fusion For Remote Sensing Data With Label Uncertainty
Abstract: In remote sensing, each sensor can provide complementary or reinforcing information. It is valuable to fuse outputs from multiple sensors to boost overall performance. Previous supervised fusion methods often require accurate labels for each pixel in the training data.… Read More
Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications
Abstract: In classifier (or regression) fusion the aim is to combine the outputs of several algorithms to boost overall performance. Standard supervised fusion algorithms often require accurate and precise training labels. However, accurate labels may be difficult to obtain in… Read More
Target Concept Learning From Ambiguously Labeled Data
Abstract: The multiple instance learning problem addresses the case where training data comes with label ambiguity, i.e., the learner has access only to inaccurately labeled data. For example, in target detection from remotely sensed hyperspectral imagery, targets are usually sub-pixel… Read More
Multiple Instance Choquet Integral For MultiResolution Sensor Fusion
Abstract: Imagine you are traveling to Columbia,MO for the first time. On your flight to Columbia, the woman sitting next to you recommended a bakery by a large park with a big yellow umbrella outside. After you land, you need… Read More
Multiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection
Abstract: The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a… Read More
Multiple Instance Dictionary Learning for Beat-to-Beat Heart Rate Monitoring from Ballistocardiograms
Abstract: A multiple instance dictionary learning approach, Dictionary Learning using Functions of Multiple Instances (DLFUMI), is used to perform beat-to-beat heart rate estimation and to characterize heartbeat signatures from ballistocardiogram (BCG) signals collected with a hydraulic bed sensor. DL-FUMI estimates… Read More
Fourier Features for Explosive Hazard Detection using a Wideband Electromagnetic Induction Sensor
Abstract: Sensors which use electromagnetic induction (EMI) to excite a response in conducting bodies have been investigated for the purpose of detecting buried explosives. In particular, wide band EMI sensors which use a relatively low number of operating frequencies have… Read More
Multiple-instance learning-based sonar image classification
Abstract: An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the… Read More
Environmentally-Adaptive Target Recognition for SAS Imagery
Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More