Abstract: In June 2018, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission was launched to measure plant temperatures and better understand how they respond to stress. While the ECOSTRESS mission delivers imagery with ~60 m spatial resolution,… Read More
Tag: hyperspectral
Papers Accepted to 2019 WHISPERS Conference in Amsterdam
Congratulations to our labmates Ron Fick and Susan Meerdink for being accepted to the 2019 IEEE WHISPERS conference in Amsterdam! The WHISPERS conference is an annual workshop focusing on advances in remote sensing with hyperspectral data. Ron will present on… Read More
Developing Spectral Libraries Using Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator
Abstract: Traditional methods of developing spectral libraries for unmixing hyperspectral images tend to require domain knowledge of the study area and the material’s spectra. In this paper, we propose using the Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator (Multi-Target MI-ACE)… Read More
Temporal Mapping of Hyperspectral Data
Abstract: The increasing popularity of hyperspectral sensors is dramatically increasing the temporal availability of data. To date, algorithms struggle to compare hyperspectral data collected across dates due to different environmental conditions during collection. In this work, we develop a temporal… Read More
Hyperspectral Tree Crown Classification Using the Multiple Instance Adaptive Cosine Estimator
Abstract: Tree species classification using hyperspectral imagery is a challenging task due to the high spectral similarity between species and large intra-species variability. This paper proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm. MI-ACE estimates a… Read More
Multi-Resolution Multi-Modal Sensor Fusion For Remote Sensing Data With Label Uncertainty
Abstract: In remote sensing, each sensor can provide complementary or reinforcing information. It is valuable to fuse outputs from multiple sensors to boost overall performance. Previous supervised fusion methods often require accurate labels for each pixel in the training data.… Read More
Multiple Instance Choquet Integral Classifier Fusion and Regression for Remote Sensing Applications
Abstract: In classifier (or regression) fusion the aim is to combine the outputs of several algorithms to boost overall performance. Standard supervised fusion algorithms often require accurate and precise training labels. However, accurate labels may be difficult to obtain in… Read More
Target Concept Learning From Ambiguously Labeled Data
Abstract: The multiple instance learning problem addresses the case where training data comes with label ambiguity, i.e., the learner has access only to inaccurately labeled data. For example, in target detection from remotely sensed hyperspectral imagery, targets are usually sub-pixel… Read More
Multiple Instance Choquet Integral For MultiResolution Sensor Fusion
Abstract: Imagine you are traveling to Columbia,MO for the first time. On your flight to Columbia, the woman sitting next to you recommended a bakery by a large park with a big yellow umbrella outside. After you land, you need… Read More
Multiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection
Abstract: The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a… Read More