PublicationPublication

Robust GANs for Semi-Supervised Classification

Abstract: Semi-supervised learning attempts to take advantage of the large amount of unlabeled information present in many datasets. However, unlabeled data will often contain samples outside the classes of interest. Many existing semi-supervised learning methods do not address this issue.… Read More

Shared Manifold Learning Using a Triplet Network for Multiple Sensor Translation and Fusion with Missing Data

Abstract: Heterogeneous data fusion can enhance the robustness and accuracy of an algorithm on a given task. However, due to the difference in various modalities, aligning the sensors and embedding their information into discriminative and compact representations is challenging. In… Read More