PublicationPublication

Buried object detection using handheld WEMI with task-driven extended functions of multiple instances

Abstract: Many effective supervised discriminative dictionary learning methods have been developed in the literature. However, when training these algorithms, precise ground-truth of the training data is required to provide very accurate point-wise labels. Yet, in many applications, accurate labels are… Read More

Instance Influence Estimation for Hyperspectral Target Signature Characterization using Extended Functions of Multiple Instances

Abstract: The Extended Functions of Multiple Instances (eFUMI) algorithm is a generalization of Multiple Instance Learning (MIL). In eFUMI, only bag level (i.e. set level) labels are needed to estimate target signatures from mixed data. The training bags in eFUMI… Read More

Bayesian fuzzy clustering

Abstract: We present a Bayesian probabilistic model and inference algorithm for fuzzy clustering that provides expanded capabilities over the traditional Fuzzy C-Means approach. Additionally, we extend the Bayesian Fuzzy Clustering model to handle a variable number of clusters and present… Read More

Functions of Multiple Instances for Learning Target Signatures

Abstract: The functions of multiple instances (FUMI) approach for learning target and nontarget signatures is introduced. FUMI is a generalization of the multiple-instance learning (MIL) approach for supervised learning. FUMI differs significantly from standard MIL and supervised learning approaches because… Read More