Abstract: In this paper, multiple instance learning (MIL) algorithms to automatically perform root detection and segmentation in minirhizotron imagery using only image-level labels are proposed. Root and soil characteristics vary from location to location, thus, supervised machine learning approaches that… Read More
PublicationPublication
Three dimensional reconstruction of plant roots via low energy X-ray computed tomography
Abstract: Plant roots are vital organs for water and nutrient uptake. The structure and spatial distribution of plant roots in the soil affects a plant’s physiological functions such as soil-based resource acquisition, yield and its ability to live under abiotic… Read More
Complex Scene Classification of PoLSAR Imagery Based on a Self-Paced Learning Approach
Abstract: Existing polarimetric synthetic aperture radar (PolSAR) image classification methods cannot achieve satisfactory performance on complex scenes characterized by several types of land cover with significant levels of noise or similar scattering properties across land cover types. Hence, we propose… Read More
Hyperspectral Tree Crown Classification Using the Multiple Instance Adaptive Cosine Estimator
Abstract: Tree species classification using hyperspectral imagery is a challenging task due to the high spectral similarity between species and large intra-species variability. This paper proposes a solution using the Multiple Instance Adaptive Cosine Estimator (MI-ACE) algorithm. MI-ACE estimates a… Read More
A fully learnable context-driven object-based model for mapping land cover using multi-view data from unmanned aircraft systems
Abstract: Context information is rarely used in the object-based landcover classification. Previous models that attempted to utilize this information usually required the user to input empirical values for critical model parameters, leading to less optimal performance. Multi-view image information is… Read More
A Target Classification Algorithm for Underwater Synthetic Aperture Sonar Imagery
Abstract: The ability to discern the characteristics of the seafloor has many applications. Due to minimal visibility, Synthetic Aperture Sonar Imagery (SAS) uses sonar to produce a texture map of the seabed below. In this paper, we discuss an approach… Read More
Fractal Analysis of Seafloor Textures for Target Detection in Synthetic Aperture Sonar Imagery
Abstract: Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest… Read More
Sample spacing variations on the feature performance for subsurface object detection using handheld ground penetrating radar
Abstract: The use of handheld ground penetrating radar (GPR) for subsurface object detection often faces challenges coming from the human operator effect, antenna height variation and uneven data sample spacing. This paper investigates the artifact of uneven sample spacing on… Read More
A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties
Abstract: Background: Root crown phenotyping has linked root properties to shoot mass, nutrient uptake, and yield in the field, which increases the understanding of soil resource acquisition and presents opportunities for breeding. The original methods using manual measurements have been… Read More
Multi-Resolution Multi-Modal Sensor Fusion For Remote Sensing Data With Label Uncertainty
Abstract: In remote sensing, each sensor can provide complementary or reinforcing information. It is valuable to fuse outputs from multiple sensors to boost overall performance. Previous supervised fusion methods often require accurate labels for each pixel in the training data.… Read More