Tag: unmixing

SPECTRAL VARIABILITY IN HSI ACCEPTED TO GRSM!

Congratulations to our labmates and collaborators: Ricardo Augusto Borsoi, Tales Imbiriba, Jose Carlos Moreira Bermudez, Cedric Richard, Jocelyn Chanussot, Lucas Drumets, Jean-Yves Tourneret, Alina Zare and Christian Jutten!  Their publication, “Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review” was… Read More

EVALUATION OF POSTHARVEST SENESCENCE IN BROCCOLI VIA HYPERSPECTRAL IMAGING

Abstract: Fresh fruit and vegetables are invaluable for human health; however, their quality often deteriorates before reaching consumers due to ongoing biochemical processes and compositional changes. We currently lack any objective indices which indicate the freshness of fruit or vegetables… Read More

Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review

Abstract: The spectral signatures of the materials contained in hyperspectral images (HI), also called endmembers (EM), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an HI. Traditional spectral unmixing (SU) algorithms neglect the… Read More

Multiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection

Abstract: The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a… Read More

Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation

Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More

Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps

Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More