Abstract: Many effective supervised discriminative dictionary learning methods have been developed in the literature. However, when training these algorithms, precise ground-truth of the training data is required to provide very accurate point-wise labels. Yet, in many applications, accurate labels are… Read More
Tag: target detection
On the use of log-gabor features for subsurface object detection using ground penetrating radar
Abstract: Handheld ground penetrating radar (GPR) enables the detection of subsurface objects under different terrains or over regions with significant amount of metal debris. The challenge for the handheld GPR is to reduce the false alarm rate and limit the… Read More
Task Driven Extended Functions of Multiple Instances
Abstract: Dictionary learning techniques have proven to be a powerful method in the pattern recognition literature. Recently supervised dictionary learning has been used to achieve very good results on a number of different data types and applications. However, these supervised… Read More
Functions of Multiple Instances for Learning Target Signatures
Abstract: The functions of multiple instances (FUMI) approach for learning target and nontarget signatures is introduced. FUMI is a generalization of the multiple-instance learning (MIL) approach for supervised learning. FUMI differs significantly from standard MIL and supervised learning approaches because… Read More
Estimating Target Signatures with Diverse Density
Abstract: Hyperspectral target detection algorithms rely on knowing the desired target signature in advance. However, obtaining an effective target signature can be difficult; signatures obtained from laboratory measurements or hand-spectrometers in the field may not transfer to airborne imagery effectively.… Read More
Anomaly detection of subsurface objects using handheld ground-penetrating radar
Abstract: This paper develops an anomaly detection algorithm for subsurface object detection using the handheld ground penetrating radar. The algorithm is based on the Mahalanobis distance measure with adaptive update of the background statistics. It processes the data sequentially for… Read More
Functions of multiple instances for sub-pixel target characterization in hyperspectral imagery
Abstract: In this paper, the Multi-target Extended Function of Multiple Instances (Multi-target eFUMI) method is developed and described. The method is capable of learning multiple target spectral signatures from weakly- and inaccurately-labeled hyperspectral imagery. Multi-target eFUMI is a generalization of… Read More
Multiple instance dictionary learning for subsurface object detection using handheld EMI
Abstract: A dictionary learning approach for subsurface object detection using handheld electromagnetic induction (EMI) data is presented. A large number of unsupervised and supervised dictionary learning methods have been developed in the literature. However, the majority of these methods require… Read More
Extended functions of multiple instances for target characterization
Abstract: An extension of the Function of Multiple Instances (FUMI) algorithm for target characterization is presented. FUMI is a generalization of Multiple Instance Learning (MIL). However, FUMI differs significantly from standard MIL and supervised learning approaches because only data points… Read More
Landmine classification using possibilistic K-nearest neighbors with wideband electromagnetic induction data
Abstract: A possibilistic K-Nearest Neighbors classifier is presented to classify mine and non-mine objects using data collected from a wideband electromagnetic induction (WEMI) sensor. The proposed classifier is motivated by the observation that buried objects often have consistent signatures depending… Read More