Abstract: A hyperspectral pixel is generally composed of a relatively small number of endmembers. Several unmixing methods have been developed to enforce this concept through sparsity promotion or piece-wise convex mixing models. Piece-wise convex unmixing methods often require as parameters… Read More
Tag: hyperspectral
A sparsity promoting bilinear unmixing model
Abstract: An algorithm, Bilinear SPICE (BISPICE), for simultaneously estimating the number of endmembers, the endmembers, and proportions for a bilinear mixing model is derived and evaluated. BISPICE generalizes the SPICE algorithm for linear mixing. The proportion estimation steps of SPICE… Read More
Bootstrapping for piece-wise convex endmember distribution detection
Abstract: A hyperspectral endmember detection and spectral unmixing algorithm that finds multiple sets of endmember distributions is presented. If endmembers are represented as random vectors, then they can be characterized by a multivariate probability distribution. These distributions are referred to… Read More
Using physics-based macroscopic and microscopic mixture models for hyperspectral pixel unmixing
Abstract: A method of incorporating macroscopic and microscopic reflectance models into hyperspectral pixel unmixing is presented and discussed. A vast majority of hyperspectral unmixing methods rely on the linear mixture model to describe pixel spectra resulting from mixtures of endmembers.… Read More
Directly measuring material proportions using hyperspectral compressive sensing
Abstract: A compressive sensing framework is described for hyperspectral imaging. It is based on the widely used linear mixing model, LMM, which represents hyperspectral pixels as convex combinations of small numbers of endmember (material) spectra. The coefficients of the endmembers… Read More
Spatial-spectral unmixing using fuzzy local information
Abstract: Hyperspectral unmixing estimates the proportions of materials represented within a spectral signature. The over whelming majority of hyperspectral unmixing algorithms are based entirely on the spectral signatures of each individual pixel and do not incorporate the spatial information found… Read More
Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering
Abstract: Imaging spectroscopy refers to methods for identifying materials in a scene using cameras that digitize light into hundreds of spectral bands. Each pixel in these images consists of vectors representing the amount of light reflected in the different spectral… Read More
Sub-pixel target spectra estimation and detection using functions of multiple instances
Abstract: The Functions of Multiple Instances (FUMI) method for learning target pattern and non-target patterns is introduced and extended. The FUMI method differs significantly from traditional supervised learning algorithms because only functions of target patterns are available. Moreover, these functions… Read More
Pattern recognition using functions of multiple instances
Abstract: The Functions of Multiple Instances (FUMI) method for learning a target prototype from data points that are functions of target and non-target prototypes is introduced. In this paper, a specific case is considered where, given data points which are… Read More
An investigation of likelihoods and priors for bayesian endmember estimation
Abstract: A Gibbs sampler for piece-wise convex hyperspectral unmixing and endmember detection is presented. The standard linear mixing model used for hyperspectral unmixing assumes that hyperspectral data reside in a single convex region. However, hyperspectral data is often non-convex. Furthermore,… Read More