Tag: endmember variability
Endmember variability in hyperspectral analysis: addressing spectral variability during spectral unmixing
January 11, 2014Abstract: Variable illumination and environmental, atmospheric, and temporal conditions cause the measured spectral signature for a material to vary within hyperspectral imagery. By ignoring these variations, errors are introduced and propagated throughout hyperspectral image analysis. To develop accurate spectral unmixing and endmember estimation methods, a number of approaches that account for spectral variability have been […]
Read more »Accounting for spectral variability in hyperspectral unmixing using beta endmember distribution
December 11, 2013Abstract: Hyperspectral imaging is widely used in the field of remote sensing (Goetz, et al., 1985; Green, et al., 1998). In a hyperspectral imaging system, sensors collect radiance/reflectance values over an area (or a scene) across hundreds of spectral bands (Goetz, et al., 1985). The hyperspectral image yielded by such system can be represented by […]
Read more »Spectral unmixing using the beta compositional model
June 11, 2013Abstract: This paper introduces a beta compositional model as a mixing model for hyperspectral images. Endmembers are represented via beta distributions, hereafter referred to as betas, to constrain endmembers to a physically-meaningful range. Two associated spectral unmixing algorithms are described and applied to simulated and real hyperspectral imagery. Links: Citation: A. Zare, P. Gader, D. […]
Read more »Bootstrapping for piece-wise convex endmember distribution detection
June 11, 2012Abstract: A hyperspectral endmember detection and spectral unmixing algorithm that finds multiple sets of endmember distributions is presented. If endmembers are represented as random vectors, then they can be characterized by a multivariate probability distribution. These distributions are referred to as endmember distributions. The proposed method combines the Piece-wise Convex Multiple Model Endmember Detection (PCOMMEND) […]
Read more »An investigation of likelihoods and priors for bayesian endmember estimation
July 11, 2010Abstract: A Gibbs sampler for piece-wise convex hyperspectral unmixing and endmember detection is presented. The standard linear mixing model used for hyperspectral unmixing assumes that hyperspectral data reside in a single convex region. However, hyperspectral data is often non-convex. Furthermore, in standard unmixing methods, endmembers are generally represented as a single point in the high […]
Read more »A comparison of deterministic and probabilistic approaches to endmember representation
June 11, 2010Abstract: The piece-wise convex multiple model endmember detection algorithm (P-COMMEND) and the Piece-wise Convex End-member detection (PCE) algorithm autonomously estimate many sets of endmembers to represent a hyperspectral image. A piece-wise convex model with several sets of endmembers is more effective for representing non-convex hyperspectral imagery over the standard convex geometry model (or linear mixing […]
Read more »PCE: piecewise convex endmember detection
June 10, 2010Abstract: A new hyperspectral endmember detection method that represents endmembers as distributions, autonomously partitions the input data set into several convex regions, and simultaneously determines endmember distributions (EDs) and proportion values for each convex region is presented. Spectral unmixing methods that treat endmembers as distributions or hyperspectral images as piecewise convex data sets have not […]
Read more »Hyperspectral endmember detection and band selection using bayesian methods
December 10, 2008Abstract: Four methods of endmember detection and spectral unmixing are described. The methods determine endmembers and perform spectral unmixing while simultaneously determining the number of endmembers, representing endmembers as distributions, partitioning the input data set into several convex regions, or performing hyperspectral band selection. Few endmember detection algorithms estimate the number of endmembers in addition […]
Read more »