Endmember variability in hyperspectral analysis: addressing spectral variability during spectral unmixing

January 11, 2014

Abstract: Variable illumination and environmental, atmospheric, and temporal conditions cause the measured spectral signature for a material to vary within hyperspectral imagery. By ignoring these variations, errors are introduced and propagated throughout hyperspectral image analysis. To develop accurate spectral unmixing and endmember estimation methods, a number of approaches that account for spectral variability have been […]

Read more »

Accounting for spectral variability in hyperspectral unmixing using beta endmember distribution

December 11, 2013

Abstract: Hyperspectral imaging is widely used in the field of remote sensing (Goetz, et al., 1985; Green, et al., 1998). In a hyperspectral imaging system, sensors collect radiance/reflectance values over an area (or a scene) across hundreds of spectral bands (Goetz, et al., 1985). The hyperspectral image yielded by such system can be represented by […]

Read more »

Spectral unmixing using the beta compositional model

June 11, 2013

Abstract: This paper introduces a beta compositional model as a mixing model for hyperspectral images. Endmembers are represented via beta distributions, hereafter referred to as betas, to constrain endmembers to a physically-meaningful range. Two associated spectral unmixing algorithms are described and applied to simulated and real hyperspectral imagery. Links: Citation: A. Zare, P. Gader, D. […]

Read more »

Bootstrapping for piece-wise convex endmember distribution detection

June 11, 2012

Abstract: A hyperspectral endmember detection and spectral unmixing algorithm that finds multiple sets of endmember distributions is presented. If endmembers are represented as random vectors, then they can be characterized by a multivariate probability distribution. These distributions are referred to as endmember distributions. The proposed method combines the Piece-wise Convex Multiple Model Endmember Detection (PCOMMEND) […]

Read more »

An investigation of likelihoods and priors for bayesian endmember estimation

July 11, 2010

Abstract: A Gibbs sampler for piece-wise convex hyperspectral unmixing and endmember detection is presented. The standard linear mixing model used for hyperspectral unmixing assumes that hyperspectral data reside in a single convex region. However, hyperspectral data is often non-convex. Furthermore, in standard unmixing methods, endmembers are generally represented as a single point in the high […]

Read more »

A comparison of deterministic and probabilistic approaches to endmember representation

June 11, 2010

Abstract: The piece-wise convex multiple model endmember detection algorithm (P-COMMEND) and the Piece-wise Convex End-member detection (PCE) algorithm autonomously estimate many sets of endmembers to represent a hyperspectral image. A piece-wise convex model with several sets of endmembers is more effective for representing non-convex hyperspectral imagery over the standard convex geometry model (or linear mixing […]

Read more »

PCE: piecewise convex endmember detection

June 10, 2010

Abstract: A new hyperspectral endmember detection method that represents endmembers as distributions, autonomously partitions the input data set into several convex regions, and simultaneously determines endmember distributions (EDs) and proportion values for each convex region is presented. Spectral unmixing methods that treat endmembers as distributions or hyperspectral images as piecewise convex data sets have not […]

Read more »

Hyperspectral endmember detection and band selection using bayesian methods

December 10, 2008

Abstract: Four methods of endmember detection and spectral unmixing are described. The methods determine endmembers and perform spectral unmixing while simultaneously determining the number of endmembers, representing endmembers as distributions, partitioning the input data set into several convex regions, or performing hyperspectral band selection. Few endmember detection algorithms estimate the number of endmembers in addition […]

Read more »