Congratulations to our labmates and collaborators: Ricardo Augusto Borsoi, Tales Imbiriba, Jose Carlos Moreira Bermudez, Cedric Richard, Jocelyn Chanussot, Lucas Drumets, Jean-Yves Tourneret, Alina Zare and Christian Jutten! Their publication, “Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review” was… Read More
Tag: endmember variability
PYTHON JUST GOT SPICE-Y!
Sparsity Promoting Iterated Constrained Endmemebers (SPICE) is now in the Python Package Index! SPICE is an efficient algorithm for finding hyperspectral endmembers and corresponding proportions for a scene. The Python implementation can now be installed easily from PyPI. Also, don’t… Read More
Multi-Target Multiple Instance Learning for Hyperspectral Target Detection
Abstract: In remote sensing, it is often challenging to acquire or collect a large dataset that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site’s spatial area and accessibility, errors… Read More
Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review
Abstract: The spectral signatures of the materials contained in hyperspectral images (HI), also called endmembers (EM), can be significantly affected by variations in atmospheric, illumination or environmental conditions typically occurring within an HI. Traditional spectral unmixing (SU) algorithms neglect the… Read More
Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation
Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More
Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps
Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More
Hyperspectral Unmixing with Endmember Variability Using Partial Membership Latent Dirichlet Allocation
Abstract: The application of Partial Membership Latent Dirichlet Allocation (PM-LDA) for hyperspectral endmember estimation and spectral unmixing is presented. PM-LDA provides a model for a hyperspectral image analysis that accounts for spectral variability and incorporates spatial information through the use… Read More
Hyperspectral Unmixing With Endmember Variability via Alternating Angle Minimization
Abstract: In hyperspectral unmixing applications, one typically assumes that a single spectrum exists for every endmember. In many scenarios, this is not the case, and one requires a set or a distribution of spectra to represent an endmember or class.… Read More
Alternating Angle Minimization Based Unmixing with Endmember Variability
Abstract: Several techniques exist for dealing with spectral variability in hyperspectral unmixing, such as multiple endmember spectral mixture analysis (MESMA) or compositional models. These algorithms are computationally very involved, and often cannot be executed on problems of reasonable size. In… Read More
Spatial and spectral unmixing using the beta compositional model
Abstract: This paper introduces the beta compositional model (BCM) for hyperspectral unmixing and four algorithms for unmixing given the BCM. Hyperspectral unmixing estimates the proportion of each endmember at every pixel of a hyperspectral image. Under the BCM, each endmember… Read More