Congratulations to our labmates and collaborators, Keerthiraj Nagaraj, Sheng Zou, Cody Ruben, Surya Dhulipala, Allen Starke, Arturo Bretas, Alina Zare , and Janise McNair! Their paper, “Ensemble CorrDet with Adaptive Statistics for Bad Data Detection,” was accepted to IET Smart Grid. … Read More
Tag: anomaly detection
ENSEMBLE CORRDET WITH ADAPTIVE STATISTICS FOR BAD DATA DETECTION
Abstract: Smart grid (SG) systems are designed to leverage digital automation technologies for monitoring, control and analysis. As SG technology is implemented in increasing numbers of power systems, SG data becomes increasingly vulnerable to cyber-attacks. Classic analytic physics-model based bad… Read More
Master’s Defenses!
Congratulations to our labmates, Hudanyun Sheng and Princess Lyons, for successful Master’s defenses! Hudanyun conducted work on “Switchgrass Genotype Classification using Hyperspectral Imagery”, while Princess investigated “Anomaly and Target Detection in Synthetic Aperture Sonar”. Great job, you two!
Hybrid data-driven physics model-based framework for enhanced cyber-physical smart grid security
Abstract: This paper presents a hybrid data-driven physics model-based framework for real time monitoring in smart grids. As the power grid transitions to the use of smart grid technology, it’s real time monitoring becomes more vulnerable to cyber attacks like… Read More
A Target Classification Algorithm for Underwater Synthetic Aperture Sonar Imagery
Abstract: The ability to discern the characteristics of the seafloor has many applications. Due to minimal visibility, Synthetic Aperture Sonar Imagery (SAS) uses sonar to produce a texture map of the seabed below. In this paper, we discuss an approach… Read More
Comparison of Prescreening Algorithms for Target Detection in Synthetic Aperture Sonar Imagery
Abstract: Automated anomaly and target detection are commonly used as a prescreening step within a larger target detection and target classification framework to find regions of interest for further analysis. A number of anomaly and target detection algorithms have been… Read More
Aggregation of Choquet integrals in GPR and EMI for handheld platform-based explosive hazard detection
Abstract: Substantial interest resides in identifying sensors, algorithms and fusion theories to detect buried explosive hazards. This is a significant research effort because it impacts the safety and lives of civilians and soldiers alike. Herein, we explore the fusion of… Read More
LBP Features for Hand-Held Ground Penetrating Radar
Abstract: Ground penetrating radar (GPR) has the ability to detect buried targets with little or no metal content. Achieving superior detection performance with a hand-held GPR can be very challenging due to the quality of the data, inconsistency of target… Read More
Fourier Features for Explosive Hazard Detection using a Wideband Electromagnetic Induction Sensor
Abstract: Sensors which use electromagnetic induction (EMI) to excite a response in conducting bodies have been investigated for the purpose of detecting buried explosives. In particular, wide band EMI sensors which use a relatively low number of operating frequencies have… Read More
Environmentally-Adaptive Target Recognition for SAS Imagery
Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More