Abstract: Countless challenges in engineering require the intelligent combining (aka fusion) of data or information from multiple sources. The Choquet integral (ChI), a parametric aggregation function, is a well-known tool for multisource fusion, where source refers to sensors, humans and/or… Read More
PublicationPublication
Multiple-instance learning-based sonar image classification
Abstract: An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the… Read More
Environmentally-Adaptive Target Recognition for SAS Imagery
Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More
Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation
Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More
Genetic Programming Based Choquet Integral for Multi-Source Fusion
Abstract: While the Choquet integral (ChI) is a powerful parametric nonlinear aggregation function, it has limited scope and is not a universal function generator. Herein, we focus on a class of problems that are outside the scope of a single… Read More
Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps
Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More
Multiple Instance Hybrid Estimator for Learning Target Signatures
Abstract: Signature-based detectors for hyperspectral target detection rely on knowing the specific target signature in advance. However, target signature are often difficult or impossible to obtain. Furthermore, common methods for obtaining target signatures, such as from laboratory measurements or manual… Read More
Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation
Abstract: Topic models (e.g., pLSA, LDA, sLDA) have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic. Yet, there… Read More
Multi-camera High-throughput Plant Root Phenotyping System
Abstract: Plant root phenotyping is a key component in plant breeding and selection for desireable root properties. Preferable root traits can not only help a plant to grow faster but also allow for more dense and deep root system architectures… Read More
Map-guided Hyperspectral Image Superpixel Segmentation Using Semi-supervised Partial Membership Latent Dirichlet Allocation
Abstract: Many superpixel segmentation algorithms which are suitable for the regular color images like images with three channels: red, green and blue (RGB images) have been developed in the literature. However, because of the high dimensionality of hyperspectral imagery, these… Read More