Congratulations to our labmates: Dylan Stewart, Anna Hampton, Alina Zare, Jeff Dale and James Keller! Their paper, “The Weakly-Labeled Rand Index” was recently accepted to the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). In their paper, the authors introduce… Read More
Tag: superpixel
THE WEAKLY-LABELED RAND INDEX
Abstract: Synthetic Aperture Sonar (SAS) surveys produce imagery with large regions of transition between seabed types. Due to these regions, it is difficult to label and segment the imagery and, furthermore, challenging to score the image segmentations appropriately. While there… Read More
Congratualtions to Guohao Yu for a Successful Proposal Defense!
Congratulations to our labmate Guahao Yu for successfully defending his research proposal! Defending an oral research proposal is the second of four milestones to completing a Ph.D. at the University of Florida. Guohao is planning to advance image segmentation techniques… Read More
Possibilistic Fuzzy Local Information C-Means for Sonar Image Segmentation
Abstract: Side-look synthetic aperture sonar (SAS) can produce very high quality images of the sea-floor. When viewing this imagery, a human observer can often easily identify various sea-floor textures such as sand ripple, hard-packed sand, sea grass and rock. In… Read More
Multiple-instance learning-based sonar image classification
Abstract: An approach to image labeling by seabed context based on multiple-instance learning via embedded instance selection (MILES) is presented. Sonar images are first segmented into superpixels with associated intensity and texture feature distributions. These superpixels are defined as the… Read More
Environmentally-Adaptive Target Recognition for SAS Imagery
Abstract: Characteristics of underwater targets displayed in synthetic aperture sonar (SAS) imagery vary depending on their environmental context. Discriminative features in sea grass may differ from the features that are discriminative in sand ripple, for example. Environmentally-adaptive target detection and… Read More
Hyperspectral Unmixing with Endmember Variability using Semi-supervised Partial Membership Latent Dirichlet Allocation
Abstract: A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral… Read More
Map-guided Hyperspectral Image Superpixel Segmentation Using Proportion Maps
Abstract: A map-guided superpixel segmentation method for hyperspectral imagery is developed and introduced. The proposed approach develops a hyperspectral-appropriate version of the SLIC superpixel segmentation algorithm, leverages map information to guide segmentation, and incorporates the semi-supervised Partial Membership Latent Dirichlet… Read More
Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation
Abstract: Topic models (e.g., pLSA, LDA, sLDA) have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic. Yet, there… Read More
Map-guided Hyperspectral Image Superpixel Segmentation Using Semi-supervised Partial Membership Latent Dirichlet Allocation
Abstract: Many superpixel segmentation algorithms which are suitable for the regular color images like images with three channels: red, green and blue (RGB images) have been developed in the literature. However, because of the high dimensionality of hyperspectral imagery, these… Read More