Conference PapersConference Papers

Multiclass subpixel target detection using functions of multiple instances

Abstract: The Multi-class Convex-FUMI (Multi-class C-FUMI) method is developed and described. The method is capable of learning prototypes for multiple target classes from hyperspectral imagery. Multi-class C-FUMI is a non-traditional supervised learning method based on the Functions of Multiple Instances… Read More

An investigation of likelihoods and priors for bayesian endmember estimation

Abstract: A Gibbs sampler for piece-wise convex hyperspectral unmixing and endmember detection is presented. The standard linear mixing model used for hyperspectral unmixing assumes that hyperspectral data reside in a single convex region. However, hyperspectral data is often non-convex. Furthermore,… Read More

A comparison of deterministic and probabilistic approaches to endmember representation

Abstract: The piece-wise convex multiple model endmember detection algorithm (P-COMMEND) and the Piece-wise Convex End-member detection (PCE) algorithm autonomously estimate many sets of endmembers to represent a hyperspectral image. A piece-wise convex model with several sets of endmembers is more… Read More