Tag: remote sensing

RandCrowns: A Quantitative Metric for Imprecisely Labeled Tree Crown Delineation

Abstract: Supervised methods for object delineation in remote sensing require labeled ground-truth data. Gathering sufficient high quality ground-truth data is difficult, especially when targets are of irregular shape or difficult to distinguish from background or neighboring objects. Tree crown delineation… Read More

WEAKLY-LABELED RAND INDEX ACCEPTED TO IGARSS!

Congratulations to our labmates: Dylan Stewart, Anna Hampton, Alina Zare, Jeff Dale and James Keller!  Their paper, “The Weakly-Labeled Rand Index” was recently accepted to the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). In their paper, the authors introduce… Read More

THE WEAKLY-LABELED RAND INDEX

Abstract: Synthetic Aperture Sonar (SAS) surveys produce imagery with large regions of transition between seabed types. Due to these regions, it is difficult to label and segment the imagery and, furthermore, challenging to score the image segmentations appropriately. While there… Read More

A REMOTE SENSING DERIVED DATA SET OF 100 MILLION INDIVIDUAL TREE CROWNS FOR THE NATIONAL ECOLOGICAL OBSERVATORY NETWORK

Abstract: Forests provide biodiversity, ecosystem, and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote… Read More

A BENCHMARK DATASET FOR INDIVIDUAL TREE CROWN DELINEATION IN CO-REGISTERED AIRBORNE RGB, LIDAR AND HYPERSPECTRAL IMAGERY FROM THE NATIONAL ECOLOGICAL OBSERVATION NETWORK

Abstract: Broad scale remote sensing promises to build forest inventories at unprecedented scales. A crucial step in this process is designing individual tree segmentation algorithms to associate pixels into delineated tree crowns. While dozens of tree delineation algorithms have been… Read More