Tag: phenotyping

SUPER RESOLUTION FOR ROOT IMAGING PUBLISHED IN APPS!

Congratulations to our labmates Jose Ruiz-Munoz and Alina Zare as well as collaborators Jyothier Nimmagadda, Tyler Dowd and James Baciak!  Their paper, titled “Super Resolution for Root Imaging”, was recently published to Applications in Plant Sciences (APPS). If you’re interested… Read More

Super Resolution for Root Imaging

Abstract: High-resolution cameras have become very helpful for plant phenotyping by providing a mechanism for tasks such as target versus background discrimination, and the measurement and analysis of fine-above-ground plant attributes. However, the acquisition of high-resolution (HR) imagery of plant… Read More

Master’s Defenses!

Congratulations to our labmates, Hudanyun Sheng and Princess Lyons, for successful Master’s defenses!   Hudanyun conducted work on “Switchgrass Genotype Classification using Hyperspectral Imagery”, while Princess investigated  “Anomaly and Target Detection in Synthetic Aperture Sonar”. Great job, you two!

Cross-site learning in deep learning RGB tree crown detection

Abstract: Tree detection is a fundamental task in remote sensing for forestry and ecosystem ecology applications. While many individual tree segmentation algorithms have been proposed, the development and testing of these algorithms is typically site specific, with few methods evaluated… Read More

A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties

Abstract: Background: Root crown phenotyping has linked root properties to shoot mass, nutrient uptake, and yield in the field, which increases the understanding of soil resource acquisition and presents opportunities for breeding. The original methods using manual measurements have been… Read More