Abstract: Machine learning approaches are affecting all aspects of modern society, from autocorrect applications on cell phones to self‐driving cars to facial recognition, personalized medicine, and precision agriculture. Although machine learning has a long history, drastic improvements in these application… Read More
Journal PapersJournal Papers
ENSEMBLE CORRDET WITH ADAPTIVE STATISTICS FOR BAD DATA DETECTION
Abstract: Smart grid (SG) systems are designed to leverage digital automation technologies for monitoring, control and analysis. As SG technology is implemented in increasing numbers of power systems, SG data becomes increasingly vulnerable to cyber-attacks. Classic analytic physics-model based bad… Read More
OVERCOMING SMALL DATASETS PUBLISHED IN COMPUTERS AND ELECTRONICS IN AGRICULTURE!
Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger! Their paper, “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was published in… Read More
ROOT IDENTIFICATION WITH MULTIPLE INSTANCE LEARNING ACCEPTED TO MACHINE VISION AND APPLICATIONS!
Congratulations to our labmates Guohao Yu, Alina Zare and Hudanyun Sheng, as well as collaborators, Roser Matamala, Joel Reyes-Cabrera, Felix Fritschi and Thomas Juenger! Their paper, “Root Identification in Minirhizotron Imagery with Multiple Instance Learning”, was recently accepted to Machine… Read More
OVERCOMING SMALL MINIRHIZOTRON DATASETS ACCEPTED TO COMPUTERS AND ELECTRONICS IN AGRICULTURE!
Congratulations to our labmates, Weihuang Xu, Guohao Yu and Alina Zare, as well as collaborators Brenden Zurweller, Diane Rowland, Joel Reyes-Cabrera, Felix Fritschi, Roser Matamala and Thomas Juenger! Their paper, titled “Overcoming Small Minirhizotron Datasets Using Transfer Learning”, was recently… Read More
Super Resolution for Root Imaging
Abstract: High-resolution cameras have become very helpful for plant phenotyping by providing a mechanism for tasks such as target versus background discrimination, and the measurement and analysis of fine-above-ground plant attributes. However, the acquisition of high-resolution (HR) imagery of plant… Read More
MIMRF Published in TGRS!
Congratulations to GatorSense alumna, Xiaoxiao Du! Her paper, titled “Multi-resolution Multi-modal Sensor Fusion For Remote Sensing Data with Label Uncertainty”, was recently published in IEEE Transactions on Geoscience and Remote Sensing. Check it out here!
Multi-Target Multiple Instance Learning for Hyperspectral Target Detection
Abstract: In remote sensing, it is often challenging to acquire or collect a large dataset that is accurately labeled. This difficulty is usually due to several issues, including but not limited to the study site’s spatial area and accessibility, errors… Read More
RhizoVision Crown Accepted to Plant Phenomics!
Machine Learning and Sensing Lab Alumni, Anand Seethepalli, and collaborators recently had a paper accepted to Plant Phenomics. The article discusses an innovative platform to help collect consistent images of root crowns for phenotyping. Check it out here!
Peanut Maturity Classification using Hyperspectral Imagery
Abstract: Seed maturity in peanut ( Arachis hypogaea L.) determines economic return to a producer because of its impact on seed weight, and critically influences seed vigor and other quality characteristics. During seed development, the inner mesocarp layer of the… Read More