Abstract: The domain of multi-look scene understanding problems includes scenarios where multiple passes over the same area have occurred and combining information from them is desired. For example, in remotely sensed SAS surveys, the same location on the seafloor is… Read More
Tag: SAS
Comparison of Possibilistic Fuzzy Local Information C-Means and Possibilistic K-Nearest Neighbors for Synthetic Aperture Sonar Image Segmentation
Abstract: Synthetic aperture sonar (SAS) imagery can generate high resolution images of the seafloor. Thus, segmentation algorithms can be used to partition the images into different seafloor environments. In this paper, we compare two possibilistic segmentation approaches. Possibilistic approaches allow… Read More
Complex Scene Classification of PoLSAR Imagery Based on a Self-Paced Learning Approach
Abstract: Existing polarimetric synthetic aperture radar (PolSAR) image classification methods cannot achieve satisfactory performance on complex scenes characterized by several types of land cover with significant levels of noise or similar scattering properties across land cover types. Hence, we propose… Read More
A Target Classification Algorithm for Underwater Synthetic Aperture Sonar Imagery
Abstract: The ability to discern the characteristics of the seafloor has many applications. Due to minimal visibility, Synthetic Aperture Sonar Imagery (SAS) uses sonar to produce a texture map of the seabed below. In this paper, we discuss an approach… Read More
Possibilistic fuzzy local information C-means with automated feature selection for seafloor segmentation
Abstract: The Possibilistic Fuzzy Local Information C-Means (PFLICM) method is presented as a technique to segment side-look synthetic aperture sonar (SAS) imagery into distinct regions of the sea-floor. In this work, we investigate and present the results of an automated… Read More