Abstract: Imprecise labels or label uncertainty are common problems in many real supervised and semi-supervised learning problems. However, most of the state-of-the-art supervised learning methods in the literature rely on accurate labels. Accurate labels are often either expensive, time-consuming, or… Read More
Tag: Gaussian Mixture Model
Investigation of Initialization Strategies for the Multiple Instance Adaptive Cosine Estimator
Abstract: Sensors which use electromagnetic induction (EMI) to excite a response in conducting bodies have long been investigated for subsurface explosive hazard detection. In particular, EMI sensors have been used to discriminate between different types of objects, and to detect… Read More
A fully learnable context-driven object-based model for mapping land cover using multi-view data from unmanned aircraft systems
Abstract: Context information is rarely used in the object-based landcover classification. Previous models that attempted to utilize this information usually required the user to input empirical values for critical model parameters, leading to less optimal performance. Multi-view image information is… Read More
A novel multi-perspective imaging platform (M-PIP) for phenotyping soybean root crowns in the field increases throughput and separation ability of genotype root properties
Abstract: Background: Root crown phenotyping has linked root properties to shoot mass, nutrient uptake, and yield in the field, which increases the understanding of soil resource acquisition and presents opportunities for breeding. The original methods using manual measurements have been… Read More