Environmental Impacts of Reclaimed Asphalt Pavement (RAP)

May 2022

John A. Bowden, Principal Investigator
University of Florida
College of Veterinary Medicine

Timothy Townsend, Co-Principal Investigator
University of Florida
Department of Environmental Engineering Sciences

Ashley Lin, Graduate Research Assistant
University of Florida
Department of Environmental Engineering Sciences

Hinkley Center for Solid and Hazardous Waste Management
University of Florida
P. O. Box 116016
Gainesville, FL 32611
www.hinkleycenter.org
This page intentionally left blank.
ACKNOWLEDGEMENTS

This research was funded by the Hinkley Center for Solid and Hazardous Waste Management. Special thanks go to the staff at the State Materials Office of the Florida Department of Transportation in Gainesville, FL for their assistance and guidance throughout this endeavor and the staff at Ray’s Metal Works in Alachua, FL for their custom fabrication of our method 1314 column apparatus. Additional thanks to Mark Musselman for getting us in contact with the staff at Preferred Materials, Anderson Columbia, CW Roberts, and Ranger Construction Industries who supported our sampling efforts. The researchers would also like to thank the efforts of the Technical Advisory Group, particularly Howard Marks, Kim Walker, Roger Brewer, Timothy Ruelke, Wilbur Mayorga, Jim Musselman, Howard Moseley, Greg Sholar, and Chad Spreadbury. Lastly, special thanks to Dr. Juan Henao-Aristizabal for his mentorship and support in instrument methodology development.
Table of Contents

ACKNOWLEDGEMENTS ... III
LIST OF TABLES ... III
LIST OF FIGURES .. V
LIST OF ABBREVIATIONS, ACRONYMS & UNITS OF MEASUREMENT VII
ABSTRACT .. VIII
EXECUTIVE SUMMARY .. IX
1.0 INTRODUCTION .. 12
1.1 Project Motivation ... 12
1.2 Objectives ... 13
1.3 Organization of Document ... 14
2.0 BACKGROUND & LITERATURE REVIEW ... 15
2.1 Reclaimed Asphalt Pavement .. 15
2.2 Measurement of Constituents in RAP – Influences of Testing Methodologies... 17
2.3 Previous Work – Hinkley Center investigations on RAP leaching 23
2.4 Previous Work - A Critical Review of Constituent Leaching from RAP 23
 2.4.1 Laboratory and Field-scale Testing ... 23
 2.4.2 Risk Assessment Modeling .. 24
 2.4.3 Critical Review Conclusions ... 28
3.0 EXPERIMENTAL APPROACH ... 29
3.1 Method Development – Leaching and Instrumentation 29
 3.1.1 Isotope Dilution and GC-UHRMS Optimization .. 35
3.2 Sample Collection and Preparation .. 37
3.3 Leaching Methodology ... 39
 3.3.1 EPA Method 1314 ... 39
 3.3.2 EPA Method 1316 ... 41
3.4 Analysis of Leachable Metals and PAHs ... 41
 3.5 Total Available Constituents Methodology .. 43
4.0 RESULTS AND DISCUSSION ... 44
4.1 Physical Characterization .. 44
4.2 Leachate Analysis – Metals .. 46
4.3 Leachate Analysis – PAHs .. 55
4.3.1 EPA Priority 16 PAHs .. 55
4.3.2 Emerging PAHs ... 66
5.0 SUMMARY AND CONCLUSIONS .. 76
 5.1 Summary and Observations ... 76
 5.2 Conclusions .. 76
6.0 REFERENCES .. 78
APPENDIX ... 85
LIST OF TABLES

Table 1-1. Summary of RAP leaching work with the Hinkley Center ... 13

Table 2-1. Potential constituent contributions to RA? by source (Spreadbury et al., 2022) 16

Table 2-2. Risk-based thresholds for metals pertaining to Florida ... 20

Table 2-3. Risk-based thresholds for PAHs pertaining to Florida .. 21

Table 3-1. PAH analyte list .. 33

Table 3-2. Leachate collection schedule .. 40

Table 4-1. EPA method 1314 leachable metals, Ft. Pierce ... 47

Table 4-2. EPA method 1314 leachable metals, Jacksonville ... 48

Table 4-3. EPA method 1314 leachable metals, SR-55 ... 49

Table 4-4. EPA method 1314 leachable metals, Tampa ... 50

Table 4-5. EPA method 1314 leachable metals, Wildwood .. 51

Table 4-6. Exceedances of FL GCTIs .. 52

Table 4-7. EPA method 1316 leachable metals .. 54

Table 4-8. Concentrations of the 16 EPA Priority PAHs measured in leachate generated from the Ft. Pierc RAP using EPA method 1314. Bold values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower .. 56

Table 4-9. Concentrations of the 16 EPA Priority PAHs measured in leachate generated from the Gainesville RAP using EPA method 1314. Bold values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower .. 57

Table 4-10. Concentrations of the 16 EPA Priority PAHs measured in leachate generated from the Jacksonville RAP using EPA method 1314. Bold values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower .. 58

Table 4-11. Concentrations of the 16 EPA Priority PAHs measured in leachate generated from the SR-55 RAP using EPA method 1314. Bold values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower .. 59
Table 4-12. Concentrations of the 16 EPA Priority PAHs measured in leachate generated from the Tampa RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 60

Table 4-13. Concentrations of the 16 EPA Priority PAHs measured in leachate generated from the Wildwood RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 61

Table 4-14. Priority PAH threshold exceedances across column-based leaching studies. Dibenz(a,h)anthracene concentrations in this study were found below limits of detection (LOD), the asterisk (*) represents PAH release below LOD but potentially above thresholds. .. 65

Table 4-15. Concentrations of emerging PAHs measured in leachate generated from the Ft. Pierce RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 67

Table 4-16. Concentrations of emerging PAHs measured in leachate generated from the Gainesville RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 68

Table 4-17. Concentrations of emerging PAHs measured in leachate generated from the Jacksonville RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 69

Table 4-18. Concentrations of emerging PAHs measured in leachate generated from the SR-55 RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 70

Table 4-19. Concentrations of emerging PAHs measured in leachate generated from the Tampa RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 71

Table 4-20. Concentrations of emerging PAHs measured in leachate generated from the Wildwood RAP using EPA method 1314. **Bold** values represent samples where the compound was identified below limits of detection (LOD), and the instrument detection limit was used to provide a conservative estimate. Asterisks (*) represent cumulative PAH release estimates which include these LOD substitutions and are likely lower. .. 72

Table 4-21. Theoretical thresholds for emerging PAHs. .. 75
LIST OF FIGURES

Figure 2-1. Typical RAP lifecycle in the US ... 15
Figure 2-2. Example of laboratory-based batch testing for leachate generation 17
Figure 2-3. Example of laboratory-based column testing for leachate generation 18
Figure 2-4. Scenario visualization of fate and transport modeling 20
Figure 2-5. IWEM DAFs compared to literature DAFs needed to meet EPA RSLs for metals ... 27
Figure 2-6. IWEM DAFs compared to literature DAFs needed to meet EPA RSLs for PAHs .. 28
Figure 3-1. Experiment methodology .. 30
Figure 3-2. Modified method 1314 column .. 31
Figure 3-3. Optimized instrument parameters for naphthalene 36
Figure 3-4. RAP sample locations .. 37
Figure 3-5. Representative sample collection strategy ... 38
Figure 3-6. Scaled-up EPA method 1314 apparatus (left). RAP packed column prior to sand cap and lid installation (right) ... 39
Figure 3-7. Representative sampling over a five-day period for largest collection fraction, T08. 41
Figure 3-8. Metals analysis via ICP-AES .. 42
Figure 3-9. PAH extraction from leachate ... 42
Figure 4-1. Particle size distribution of six RAP sources .. 44
Figure 4-2. pH of RAP samples during EPA method 1314 .. 45
Figure 4-3. Conductivity of RAP samples during EPA method 1314 45
Figure 4-4. Eluate concentration curve for vanadium and aluminum exceedances 53
Figure 4-5. Cumulative release curve for vanadium and aluminum exceedances 53
Figure 4-6. Batch test and column test metals at a l/S of 10 .. 55
Figure 4-7. Eluate concentration curves for naphthalene, fluorene, and phenanthrene .. 63
Figure 4-8. Cumulative release of naphthalene, fluorene, and phenanthrene 64
Figure 4-9. Eluate concentration curves for 2-methyl naphthalene 73
Figure 4-10. Cumulative release of 2-methylnaphthalene... 73

Figure 4-11. Eluate concentration curves for 1-methylnaphthalene.. 74

Figure 4-12. Cumulative release of 1-methylnaphthalene... 74

Figure 4-13. Emerging and Priority PAH contributions to leachable PAH concentrations.................. 75
List of Abbreviations, Acronyms & Units of Measurement

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaP TEF</td>
<td>Benzo(a)pyrene toxic equivalency factor</td>
</tr>
<tr>
<td>COPC</td>
<td>Constituent of potential concern</td>
</tr>
<tr>
<td>DAF</td>
<td>Dilution attenuation factor</td>
</tr>
<tr>
<td>DI</td>
<td>Deionized</td>
</tr>
<tr>
<td>EI</td>
<td>Electron ionization</td>
</tr>
<tr>
<td>FDOT SMO</td>
<td>Florida Department of Transportation State Materials Office</td>
</tr>
<tr>
<td>GCTL</td>
<td>Groundwater cleanup target level</td>
</tr>
<tr>
<td>GC-UHRMS</td>
<td>Gas chromatography ultra-high resolution mass spectrometry</td>
</tr>
<tr>
<td>ICP-AES</td>
<td>Inductively coupled plasma atomic emissions spectroscopy</td>
</tr>
<tr>
<td>IWEM</td>
<td>Industrial waste management evaluation model</td>
</tr>
<tr>
<td>L/S</td>
<td>Liquid to solid ratio</td>
</tr>
<tr>
<td>LEAF</td>
<td>Leaching environmental assessment framework</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>NAPA</td>
<td>National Asphalt Pavement Association</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>RAP</td>
<td>Reclaimed asphalt pavement</td>
</tr>
<tr>
<td>RSD</td>
<td>Relative standard deviation</td>
</tr>
<tr>
<td>RSL</td>
<td>Regional screening level</td>
</tr>
<tr>
<td>SCTL</td>
<td>Soil cleanup target level</td>
</tr>
<tr>
<td>SIM</td>
<td>Selective ion monitoring</td>
</tr>
<tr>
<td>SPLP</td>
<td>Synthetic precipitation leaching procedure</td>
</tr>
<tr>
<td>SR</td>
<td>State road</td>
</tr>
<tr>
<td>TCLP</td>
<td>Toxicity characteristic leaching procedure</td>
</tr>
<tr>
<td>UF SMMRL</td>
<td>University of Florida Sustainable Materials Management Research Laboratory</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>mg</td>
<td>milligrams</td>
</tr>
<tr>
<td>pH</td>
<td>measurement of the hydrogen ion activity or measurement of the acidity of water.</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
</tbody>
</table>
ABSTRACT

Florida, like many states in the US, has an interest in recycling reclaimed asphalt pavement (RAP) for its associated economic and environmental benefits. Two previous Hinkley Center projects, *Leaching Characteristics of Asphalt Road Waste* (1999) and *Risk Assessment of the Reuse and Disposal of Several Asphalt Waste Materials* (2013) have investigated constituent leaching from RAP, concluding that RAP does not pose a significant threat to human health and the environment. However, concerns continue to be raised in some parts of Florida regarding potential environmental issues associated with RAP. Concomitantly, the concerns of reusing RAP have been raised in other states, prompting a call to review work on this topic identifying and characterizing the knowledge gaps remaining with RAP. The University of Florida completed a comprehensive and synthesized literature review, contextualizing the existing body of work on the subject (Spreadbury et al., 2021). Through this process, gaps in the existing body of work were identified, pertaining to use of unrealistic leaching methodologies and limited analysis of polycyclic aromatic hydrocarbons (PAHs). To address these deficits, a modified method was developed based on EPA method 1314 that simulates conditions representative of RAP in stockpiling and reuse scenarios. Leachates were analyzed for heavy metals and an expanded suite of PAHs, comprised of traditionally measured EPA Priority 16 PAHs and 23 emerging PAHs from the literature. Results showed similar conclusions from previous studies. Like previous RAP studies, instances of exceedances of risk-based thresholds for metals and PAHs were observed at concentrations likely to be diluted and attenuated below thresholds. This suggests limited threat to human health and the environment posed by RAP stockpiling and reuse.
EXECUTIVE SUMMARY

(Dates: November 1st, 2020 to April 30th, 2022)

PROJECT TITLE: Environmental Impacts of Reclaimed Asphalt Pavement (RAP)

PRINCIPAL INVESTIGATOR(S): Timothy Townsend, John Bowden

AFFILIATION: Departments of Environmental Engineering Sciences and Veterinary Medicine, University of Florida

COMPLETION DATE: April 30th, 2022

PROJECT SUMMARY

The purpose of this project was to address growing concerns related to the environmental risks associated with Reclaimed Asphalt Pavement (RAP) storage and use in Florida. While RAP is one of the most recycled materials by mass in the state and has been shown to pose minimal risk to the environment when properly managed, recent reports have reignited concern over constituent leaching, including emerging contaminants historically unstudied in RAP. Though the existing body of work points to limited risks associated with RAP reuse, perceived risk, especially regarding emerging contaminants must be addressed to ensure best management strategies are appropriate.

A literature review was completed in parallel to this project (Spreadbury et al., 2021). In this review, leaching data from previous studies was synthesized to provide context to constituent leaching in terms of the leaching methodology used. Most studies concluded limited risk associated with RAP leaching with a few studies observing constituent leaching at concentrations above risk-based thresholds when directly compared to thresholds. To critically assess the existing data, constituent concentrations were further investigated with fate and transport modeling. Environmental factors including distance, dilution, and attenuation were considered using the Environmental Protection Agency’s (EPA) Industrial Waste Management Evaluation Model (IWEM). Except for lead and naphthalene, constituent concentrations after consideration of dilution and attenuation were reduced below thresholds.
Through this review process and previous Hinkley Center investigations on RAP leaching, deficiencies in the existing body of work were identified. Existing studies utilize leaching methodologies unrealistic to RAP reuse conditions which require modification (e.g., size reduction) of material prior to analysis. Additionally, existing studies often limited polycyclic aromatic hydrocarbon (PAH) analysis to 16 PAHs designated as Priority PAHs by the EPA. In this study, six RAP sources from the state of Florida were physically characterized, leached, and analyzed for leachable and total environmentally available metals and PAHs. To address deficiencies in the existing body of research, RAP leaching was assessed under conditions representative to those experienced by RAP in stockpiling and reuse scenarios using a modified method developed from EPA method 1314. Further, a sensitive analytical method including 23 emerging PAHs and the 16 Priority PAHs was created to determine if existing studies were underestimating PAH release by limiting analysis to Priority compounds.

Using the most up-to-date leaching methodology representative of RAP stockpiling and reuse scenarios, this study found similar conclusions to most existing literature and previous Hinkley Center investigations. Exceedances of risk-based thresholds were found for PAHs and metals in some samples. Though emerging PAHs were found in analysis of total available PAHs, only naphthalene-related, emerging compounds were found above limits of detection in leachate. In comparison to the EPA 16 Priority PAHs, emerging PAHs contributed less to leached PAH concentrations across all samples. This indicates that previous studies assessing Priority PAHs only did not miss large contributions from emerging PAHs. Like other industrial materials, risks associated with beneficial reuse can vary by source; however, results from this investigation suggest that RAP poses minimal risk to human health and the environment regarding metal and PAH leaching. While laboratory-scale studies, like this research, are intended to model leaching risk conservatively, further investigation of constituent leaching at the full-scale, whether at a stockpile or roadway, are critical to understanding influence from factors outside of laboratory-controlled conditions, like temperature, UV exposure, etc.
METRICS

Graduate students funded by THIS Hinkley Center project

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Department</th>
<th>Professor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashley Lin</td>
<td>PhD</td>
<td>Environmental Engineering Sciences</td>
<td>Timothy Townsend</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Alina Timshina</td>
<td>PhD</td>
<td>Environmental Engineering Sciences</td>
<td>John Bowden</td>
<td>University of Florida</td>
</tr>
</tbody>
</table>

Undergraduate students working on THIS Hinkley Center project

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Professor</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordan Magnuson</td>
<td>Environmental Engineering Sciences</td>
<td>Timothy Townsend</td>
<td>University of Florida</td>
</tr>
</tbody>
</table>
Report details are being withheld from public posting pending peer-reviewed journal publication. For more information please contact Principal Investigators Timothy Townsend (ttown@ufl.edu) or John Bowden (john.bowden@ufl.edu).