

An Integrated Tool for Local Government to Track Materials Management and Progress toward Sustainability Goals

April 2nd, 2021 University of Florida

Dr. Timothy Townsend, Professor Dr. Malak Anshassi, Postdoctoral Research Associate

Department of Environmental Engineering Sciences Engineering School of Sustainable Infrastructure and the Environment University of Florida, USA

Introduction

Agenda

Review Project History								
-HC 16/17 Project -WasteCalc Project -HC 18/19 Project -HC 19/20 Project	Walkthrough Tool -Show 2020 SMM Tool -Discuss Beta Testing Feedback -Open floor for feedback	Next Steps -Discuss training materials -Invite more to test tool -Important dates						

Projects History

2016

Hinkley Center Florida Solid Waste Management: State of the State (HC16/17 Project)

Florida's Recycling Rate

UF

Florida Material Mass Flow (2016)

Florida Material Cost Flow (2016)

UF

Evaluating Reaching 75% Using Different Approaches

- 1. Waste-to-Energy (WTE) Approach
- 2. Mixed Waste Processing (MWP) Approach
- 3. Mandatory Residential Curbside Recycling Approach
- 4. Mandatory Construction & Demolition Debris(C&D) and Yard Trash (YT) Recycling Approach
- 5. Mandatory Non-Residential Food Waste Composting Approach

NOTE: Applied only to counties with populations of 150,000+

Using environmental impacts in goal setting

Importance of Source Reduction

Source: "Replacing Recycling Rates with Life-Cycle Metrics as Government Materials Management Targets" (Anshassi et al., 2018)

Historic Source Reduced Materials

MSW Material	al 2008 Generation 2015 G		Source reduced or
	(Tons/Person)	(Tons/Person)	2008?
Newspaper	0.0768	0.0508	Source Reduced
Glass	0.0423	0.0433	Source Generated
Aluminum Cans	0.0120	0.0097	Source Reduced
Plastic Bottles	0.0238	0.0230	Source Reduced
Steel Cans	0.0172	0.0154	Source Reduced
Corrugated Paper	0.1369	0.1276	Source Reduced
Office Paper	0.0433	0.0309	Source Reduced
Other Plastics	0.0610	0.0725	Source Generated
Other Paper	0.1091	0.1101	Source Generated
Textiles	0.0480	0.0379	Source Reduced
C&D Debris	0.3999	0.4867	Source Generated
Tires	0.0198	0.0120	Source Reduced

Cite This: Environ. Sci. Technol. 2018, 52, 6544-6554

pubs acs org/est

Replacing Recycling Rates with Life-Cycle Metrics as Government Materials Management Targets

Malak Anshassi, Steven Laux, and Timothy G. Townsend*9

Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, 333 New Engineering Building, P.O. Box 116450, Gainesville, Florida 32611-6450, United States

Supporting Information

ABSTRACT: In Florida, the passing of the Energy, Climate Change, and Economic Security Act of 2008 established a statewide mass-based municipal solid waste recycling rate goal of 75% by 2020. In this study, we describe an alternative approach to tracking performance of materials management systems that incorporates life-cycle thinking. Using both greenhouse gas (GHG) emissions and energy use as life-cycle indicators, we create two different materials management baselines based on a hypothetical 75% recycling rate in Florida in 2008. GHG emission and energy use footprints resulting from various 2020 materials management strategies are compared to these baselines, with the results normalized to the same mass-based 75% recycling rate. For most scenarios,

LCI-normalized recycling rates are greater than mass-based recycling rates. Materials management strategies that include recycling of curbside-collected materials such as metal, paper, and plastic result in the largest GHG- and energy-normalized recycling rates. Waste prevention or increase, determined as the net difference in per-person mass discard rate for individual materials, is a major contributor to the life-cycle-normalized recycling rates. The methodology outlined here provides policy makers with one means of transitioning to life-cycle thinking in state and local waste management goal setting and planning.

INTRODUCTION

State and local governments in the United States (US) commonly rely on mass-based municipal solid waste (MSW) recycling rate goals or targets to promote sustainable materials management (SMM) and landfill diversion. These goals are typically established by state legislatures or local governments and apply to waste materials generated by households, institutions, and businesses. Examples of these goals include South Carolina (40% recycling),1 Maryland (55% recycling),2 Florida (75% recycling),3 and San Francisco (zero waste),4 all to be reached by 2020. These recycling rates correspond to the mass of material recycled (or diverted from landfill disposal in some cases) divided by the total mass generated. While providing a tangible target that can be tracked over time to quantify progress, the recycling rate metric suffers from several inherent problems.5-7 First, a reduction in the overall mass of materials discarded, referred to in this paper as waste prevention (commonly called source reduction by the waste management community) and the most desired step in the waste management hierarchy, 6,8-10 is not appropriately recomized in mass-based recurling rates. For example a A second problem with mass-based recycling goals is that they favor heavier materials without considering the environmental benefits gained through recycling. In reality, the recycling of some waste components produces much greater environmental benefits (e.g., avoidance of greenhouse gas (GHG) emissions and energy use) than others.^{11–13} For example, recycling aluminum cans and office paper provides a considerably greater GHG emission and energy use avoidance than recycling (in some cases through composting) equivalent masses of glass, yard trash (YT), or food waste.¹⁴ Also, a singular reliance on recycling rates neglects the positive contributions from other SMM approaches, including changes in product and packaging design, the recovery of energy from waste (EfW), and the implementation of more sustainable landfill practices.¹³

This study examines a different approach to mass-based recycling rates for quantifying and tracking progress toward SMM. One potential alternative is to measure materials management progress relative to the mass of material recycled or landfilled at an initial point in time. For example, California has established a statewide recycling goal corresponding to 75%

Projects History

Updated WasteCalc Functionality

Input

Behind the Scenes

Recycle	ed Tons					
Newspaper	Ferrous Metals					
Glass	White Goods					
Aluminum Cans	Non Ferrous Metals					
Plastic Bottles	Other Paper					
Steel Cans	Textiles					
Corrugated Boxes	C&D Debris					
Office Paper	Food Waste					
Yard Trash	Miscellaneous					
Other Plastics	Tires					
Landfilled Tons						
Combus	ted Tons					

Collected C&D Tons

Output

% MSW Composition Newspaper Glass Aluminum Cans **Plastic Bottles** Steel Cans **Corrugated Boxes Office Paper** Yard Trash **Other Plastics** Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous Tires

Tons MSW Composition Newspaper Glass Aluminum Cans Plastic Bottles Steel Cans **Corrugated Boxes** Office Paper Yard Trash Other Plastics Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous Tires

Updates or new components to WasteCalc

04/02/2021

Projects History

HC 18/19 Project Objectives

- **Develop a publicly available LCA tool** used to measure and compare social, economic, and environmental impacts for various Florida solid waste management approaches.
- Develop additional lifecycle impact (LCI) factors (e.g., energy use, emissions, etc.) that will allow users to consider a wider variety of impacts associated with various materials management approaches.

IJF

Workbook-Based LCA Tool

LCI Factors

UF

Methods of Obtaining Environmental-Based LCI Factors

Traditional LCA Models

Version 15 Waste Reduction Model (WARM) Inputs									
Use this worksheet to desc	cribe the baseline and alte	rnative waste managemen Please ente	t scenarios that you wa r data in short tons (1 s	nt to compare. The hort ton = 2,000 lbs.)	e blue shaded areas)	indicate where you need	to enter information.		
 Describe the baseline generation an If the material is not generated in yo it blank or enter 0. Make sure that th 	2. Describe the alternative management scenario for the waste materials generated in the Any decrease in generation should be entered in the Source Reduction column. Any increase in generation should be entered in the Source Reduction column as a nega Make sure that the total quantity generated equals the total quantity managed.					baseline. tive value.			
Material Type Material	Tons Tons Recycled Landfille	Tons To d Combusted Comp	ns Anaerobically osted Digested	Tons Generated	Tons Source Reduced	Tons Tons Recycled Landfilled	Tons Combusted Cor	Tons Tons Anaerobically mposted Digested	
3. In order to account for the avoided e Select state for which you are condu	lectricity-related emissio acting this analysis.	ns in the landfilling and con	nbustion pathways, EPA	assigns the appro	priate regional "mar	ginal" electricity grid mix (emission factor base	ed on your location.	
Please select state or select national aver	rage: National Av	erage							
Region Location:	National Av	erage							
4. To estimate the benefits from source However, you may choose to estimate bound estimate of the benefits from or is not a common practice; EPA ass	e reduction, EPA usually te the emission reduction source reduction. Selec sumes that the current m	ssumes that the material t is from source reduction u which assumption you wa x is comprised of 100% virp	hat is source reduced on nder the assumption th nt to use in the analysis jin inputs. Consequent	vould have been ma at the material wou s. Note that for mate y, the source reduc	anufactured from th Ild have been manuf rials for which infor tion benefits of both	e current mix of virgin and factured from 100% virgin rmation on the share of re h the "Current mix" and "	d recycled inputs. inputs in order to ob cycled inputs used i 100% virgin" inputs a	tain an upper n production is unavailabi re the same.	le
5. The emissions from landfilling depe "National Average" to calculate emiss select "No LFG Recovery" and proce	nds on whether the land sions based on the estim ed to question 8. If a LFG	II where your waste is dis ated proportions of landfills system is in place at your la	posed has a landfill gas s with LFG control in 20 andfill, select "LFG Recc	(LFG) control syste 2 and proceed to q very" and click one	m. If you do not kno uestion 7. If your lar of the options in 6a	ow whether your landfill h ndfill does not have a LFG to indicate whether LFG i	as LFG control, selec system, s recovered for ener	st gy or flared.	
National Average LFG Recovery No LFG Recovery									
6a. If your landfill has gas recovery, doe	s it recover the methane	or energy or flare it?							
Recover for energy Flare									

EPA Waste Reduction Model (WARM) User Input

Material	GHG Emissions per Ton of Material Source Reduced (MTCO₂E)	GHG Emissions per Ton of Material Recycled (MTCO₂E)	GHG Emissions per Ton of Material Landfilled (MTCO₂E)	GHG Emissions per Ton of Material Combusted (MTCO₂E)	GHG Emissions per Ton of Material Composted (MTCO2E)	GHG Emission per Ton of Material Anaerobically Digested (MTCOzE)
Corrugated Containers	(5.58)	(3.14)	0.25	(0.49)	NA	NA
Magazines/third-class mail	(8.57)	(3.07)	(0.40)	(0.36)	NA	NA
Newspaper	(4.68)	(2.71)	(0.82)	(0.56)	NA	NA
Office Paper	(7.95)	(2.87)	1.24	(0.47)	NA	NA
Phonebooks	(6.17)	(2.63)	(0.82)	(0.56)	NA	NA
Textbooks	(9.02)	(3.11)	1.24	(0.47)	NA	NA
Mixed Paper (general)	(6.07)	(3.55)	0.14	(0.49)	NA	NA
Mixed Paper (primarily residential)	(6.00)	(3.55)	0.08	(0.49)	NA	NA
Mixed Paper (primarily from offices)	(7.37)	(3.58)	0.18	(0.45)	NA	NA
Food Waste	(3.66)	NA	0.54	(0.14)	(0.18)	(0.04
Food Waste (non-meat)	(0.76)	NA	0.54	(0.14)	(0.18)	(0.04
Food Waste (meat only)	(15.10)	NA	0.54	(0.14)	(0.18)	(0.04)
Beef	(30.09)	NA	0.54	(0.14)	(0.18)	(0.04)
Poultry	(2.45)	NA	0.54	(0.14)	(0.18)	(0.04)
Grains	(0.62)	NA	0.54	(0.14)	(0.18)	(0.04)
Bread	(0.66)	NA	0.54	(0.14)	(0.18)	(0.04)
Fruits and Vegetables	(0.44)	NA	0.54	(0.14)	(0.18)	(0.04)
Dairy Products	(1.75)	NA	0.54	(0.14)	(0.18)	(0.04)
Yard Trimmings	NA	NA	(0.18)	(0.17)	(0.15)	(0.09)
Grass	NA	NA	0.13	(0.17)	(0.15)	0.00
_eaves	NA	NA	(0.52)	(0.17)	(0.15)	(0.15
Branches	NA	NA	(0.50)	(0.17)	(0.15)	(0.23
HDPE	(1.42)	(0.86)	0.02	1.28	NA	NA
LDPE	(1.80)	NA	0.02	1.29	NA	NA
PET	(2.17)	(1.15)	0.02	1.24	NA	NA

EPA Waste Reduction Model (WARM) Results Output

Traditional LCA Models

🖷 RTI International - Municipal Solid Waste Decision Support Tool: Case Scenario (d) File Help Advanced Define Select Select Report Build Set Process Set Diversion Solve and View Specify Model Generation Processes Options Process Inputs Constraints Targets Reports Save and Build Model Specify Process Inputs Enter Values or Accept All Defaults. Visited forms are marked in blue and saved forms are marked in green. - Scenario ^ Enter Residential Waste Stream Fractions: Sector 1 - Solid Waste Generation Solid Waste Stream Composition Residential Waste Stream Fractions: Sector 1 Residential Waste Stream Fractions: Sector 2 Enter site-specific waste composition information to replace the default U.S. national average values provided. Waste co entered as mass fractions, based on wet weights. Any user-entered values must maintain a total sum of 1 (100%) for all Multifamily Waste Stream Fractions: Sector 1 Multifamily Waste Stream Fractions: Sector 2 Commercial Waste Stream Fractions: Sector 1 Commercial Waste Stream Fractions: Sector 2 Commercial Waste Stream Fractions: Sector 3 Parameter Description Value Units Commercial Waste Stream Fractions: Sector 4 Commercial Waste Stream Fractions: Sector 5 Solid Waste Properties Solid Waste Density Leaves fraction of 1 0.04 Solid Waste Heating Value Solid Waste Ash Content Solid Waste Combustion Efficiency Grass fraction of 1 0.054 Solid Waste Water Content Energy Electrical Energy < Select Regional Electricity Grid User Defined Regional Electricity Grid Mix User Defined Regional Grid Generation Efficiencies Save **Restore Defaults** Regional Displacement Fuel Definition Energy Cost and Revenues The second second second second

EPA/RTI Municipal Solid Waste Decision Support Tool (MSW-DST) User Input²¹

UF

Traditional LCA Models

	А	В	с	D	E	F	G	Н	
1				16 - C t					
2		Cost/LCI Report for All	I Unit Processes by Spec	cific Sector		Carbon D	ioxide Fossil		
4				Carbon Dioxide Fossil	2.50	0.000			
5			Collection	1,360,000	j 2,000	0,000			
6			Transfer	0	≦ 1,500 9 1,000	0,000			
7			Separation	0	£ 50	0,000			
8			Treatment	0	03	0			
9			Disposal	941,000	P S Q	ction ster ation	ment posal artati.	utact. Total	
10			Transportation	0		Colles Tran ceparts	reath Dist anspo ana	Nº Net	
11			Remanufacturing	0		,	110 Pe		
12			Net Total	2,300,000					
13									
14									
15									_
16		Name		Mixed MSW	Landfill				
17		Node Type		Collection	Disposal	Transportation	Remanufacturing	Total	
18		Sector Name		Residential Sector 1					
19									
20		Cost	\$/year	6,670,000	3,820,000) ()	0 10,500,	,000,
21		Energy Consumption	MMBTU/year	33,500	57,500) ()	0 91,	,000,
22		Total Particulate Matter	lbs Total PM/year	325	1,150) ()	0 1,	,480
23		Nitrogen Oxides	lbs NOx/year	21,000	13,200) ()	0 34,	,200
24		Hydrocarbons (non CH4)	lbs HC/year	5,640	3,200) ()	0 8,	,840
25		Sulfur Oxides	lbs SOx/year	2,740	2,370) ()	0 5,	,110
26		Carbon Monoxide	lbs CO/year	9,530	4,880) ()	0 14,	,400
27		Carbon Dioxide Biogenic	lbs CO2 Bio/year	643	232	2 ()	0	875
28		Carbon Dioxide Fossil	lbs CO2 Fossil/year	1,360,000	941,000) ()	0 2,300,	,000,
29		Ammonia (Air)	lbs NH4 (Air)/year	0	2	2 0)	0	2
30		Lead (Air)	lbs Pb (Air)/year	0	() ()	0	0
31		Methane (CH4)	lbs CH4/year	430	186	i ()	0	616
32		Hydrochloric Acid	lbs HCl/year	3	1	2 ()	0	5
33		Carbon Equivalents	tons C-eq/year	187	129) ()	0	316
34		Solid Waste 1	Ibs SW1/year	n/a	n/a	n/a	n/a		0
35		Solid Waste 2	Ibs SW2/year	n/a	n/a	n/a	n/a		0
36		Solid Waste 3	Ibs SW3/year	n/a	n/a	n/a	n/a		0
37		Solid Waste 4	Ibs SW4/year	n/a	n/a	n/a	n/a		0
38		Solid Waste 5	Ibs SW5/year	n/a	n/a	n/a	n/a	0 10	0
39		Total Solid Waste	lbs Switotal/year	14,400	5,160			0 19,	,000
40		Dissolved Solids	lbs b5/year	3,680	1,320			0 S,	150
41		suspended solids	lbs BOD/year	84	05			0	104
42		COD	lbs COD/year	14	10			0	195
45		Oil	lbs CoD/ year	92	22.10			0 22	200
	Þ	MassFlows Recycling	Cost_LCI TRACI (÷					:

EPA/RTI Municipal Solid Waste Decision Support Tool (MSW-DST) Results Output²²

	pullinzation Life-cycle Flamework		
Accounting Mod	le Tool		
Developed at North	Carolina State University		
System Inputs			
Scenario name:	Landfill		
I		New Scenario	Continue
Starting Process:	Landfill	New Scenario	Scenario
		Clears all data and	Continues from
		starts from the	save point
		beginning	
Additional resource	es esta esta esta esta esta esta esta es		
Additional model docum	entation and publications can be found at the SWOLF website		
go.ncsu.edu/SWOL			
Change log and ver			
Date	sion Changes	Version #	
Date August 11, 2016	sion Changes Initial release of evaluation version.	Version #	
Change log and ver Date August 11, 2016 November 30, 2016	Sion Changes Initial release of evaluation version. Updated collection models and calculations.	Version # 0.9 0.9.1	
Change log and ver Date August 11, 2016 November 30, 2016 December 13, 2016	sion Changes Initial release of evaluation version. Updated collection models and calculations. Updated calculations for other modes of internodal transportation	Version # 0.9 0.9.1 0.9.2	
Change log and ver Date August 11, 2016 November 30, 2016 December 13, 2016 February 10, 2017	sion Changes Initial release of evaluation version. Updated collection models and calculations. Updated calculations for other modes of internodal transportation Added Continue Scenario option	Version # 0.9 0.9.1 0.9.2 0.9.3	
Change log and ver Date August 11, 2016 November 30, 2016 December 13, 2016 February 10, 2017 March 26, 2018	sion Changes Initial release of evaluation version. Updated collection models and calculations. Updated calculations for other modes of internodal transportation Added Continue Scenario option Added additional error checking and removed mixed waste collection.	Version # 0.9 0.9.1 0.9.2 0.9.3 0.9.4	
Change log and ver Date August 11, 2016 November 30, 2016 December 13, 2016 February 10, 2017 March 26, 2018 April 3, 2019	sion Changes Initial release of evaluation version. Updated collection models and calculations. Updated calculations for other modes of internodal transportation Added Continue Scenario option Added additional error checking and removed mixed waste collection. Made additional to models and calculations.	Version # 0.9 0.9.1 0.9.2 0.9.3 0.9.4 0.9.5	
Change log and ver Date August 11, 2016 November 30, 2016 December 13, 2016 February 10, 2017 March 26, 2018 April 3, 2019	sion Changes Initial release of evaluation version. Updated collection models and calculations. Updated calculations for other modes of internodal transportation Added Continue Scenario option Added additional error checking and removed mixed waste collection. Made additional to models and calculations.	Version # 0.9 0.9.1 0.9.2 0.9.3 0.9.4 0.9.5	

NCSU Solid Waste Optimization Framework (SWOLF) User Input

Traditional LCA Models

LCIA Outputs										
										Landfill
Impacts	Total	Collection	Transportation	Separation	AD	Composting	WTE	Landfill	Reprocessing	LF1
IPCC 2007 climate change GWP 100a	40,314,742	0	0	0	0	0	0	40,314,742	0	40,314,742
cumulative energy demand fossil non-renewable energy resources, fossil	152,967,548	0	0	0	0	0	0	152,967,548	0	152,967,548
TRACI environmental impact acidification	1,179,201	0	0	0	0	0	0	1,179,201	0	1,179,201
TRACI environmental impact eutrophication	6,180	0	0	0	0	0	0	6,180	0	6,180
TRACI environmental impact photochemical oxidation	57,144	0	0	0	0	0	0	57,144	0	57,144
USEtox ecotoxicity total	9.665.260	0	0	0	0	0	0	9.665.260	0	9.665.260
USEtox human toxicity total	1	0	0	0	0	0	0	1	0	1
Cost (\$)	1731000.606	0	0	0	0	0	0	1731000.606	0	1731000.606
								I		
Mass Flows Costs LCI Outputs LCIA Outputs	Ð									4

NCSU Solid Waste Optimization Framework (SWOLF) Results Output

Methods of Obtaining Environmental-Based LCI Factors

Landfill Space Savings

Methods of Obtaining Environmental-Based LCI Factors

HC18/19 Workbook Tool

Workbook Tool Introduction Screen for Users

Iorida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Materials Management Recycling Rates in Florida

Welcome to the Hinkley Center for Solid and Hazardous Waste Management Funded SMM Workbook Tool!

This tool is an outcome of the Hinkley Center funded project titled, "Looking beyond Florida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Materials Management Recycling Rates in Florida". In a previous Hinkley Center project titled, "Florida Solid Waste Management: State of the State", researchers from the University of Florida estimated the material mass flow for the Florida solid wase stream and conducted a comprehensive analysis on the economic costs and environmental footprints associated with the 2016 waste stream. The researchers also conducted an evaluation of alternative waste management strategies upon the recycling rate, economic costs, and environmental footprint. The alternative waste management strategies were based on the concept of sustainable materials management (SMM). SMM originated in a 2002 EPA publication entitled "Beyond RCRA: Waste and Materials Management in the Year 2020." In 2009, EPA further developed the idea in "Sustainable Materials Management: The Road Ahead," which presented a roadmap for moving toward SMM. In these and other documents, SMM is characterized as a varying set of resource-efficient actions to be taken across the entire lifecycle of a material or product — from extraction through refinement, manufacturing, assembly, distribution, use, and end-of-life management. SMM, then, focuses on identifying best material management practices based on environmental, economic, and social impacts. Lifecycle assessment (LCA) models are tools that measure those impacts, and policymakers use LCA results to make SMM-informed decisions. In effort to continue this research, University of Florida researchers evaluated various US-developed LCA models and literature to create lifecycle impact (LCI) factors that can be used to measure the impacts of a community's waste management practices as part of the "Looking beyond Florida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Materials Management Recycling Rates in

To read more on the scope of this project and documentation of this tool please visit:

https://www.essie.ufl.edu/home/townsend/research/florida-solid-waste-issues/hc18/

To read more about the previous project please visit:

https://www.essie.ufl.edu/home/townsend/research/florida-solid-waste-issues/hc16/

This workbook tool provides local government and other users the opportunity to measure the impacts of their solid waste management practices. Below is a description of the components of this workbook tool.

	Tab No.	No. Tab Title Tab Description								
	1	User In	er Input User must complete Steps 1 and 2. Step 1 permits the user to select from seven models, which are used to							
		Ι,	estimate L CLfactors. The L CLfactors are specifically associated with each model. In Step 2 the user must enter the							
nt	troduc	tion	1-User Input	2-Summary LCA Output	3-Clim. Chan. (tCO2eq per Ton)	4-Energy (+) 🗄 🖪				

6 7 8

9

10 11

12

13

HC18/19 Workbook Tool

Α	В	С	D	E	F	G	User Inpu	it Page to
	User Directions:						Select LC	A Model
	Step 1:							
	From the drop-down	n window to the rig	ht please select the model preference.	SWOLF (US)			and Innut	Macc Data
	Note: See below for	or a description o	f each model. All models are US-based L	LCA models specifc	ally created for	US LCA study use.	and input	Mass Data
		Model	Description of LCI Factors That Can be	e Estimated When S	electing Mode	el l		
		MSWDST (FL)	5 LCI factors: climate change, human toxi	icity, marine ecotoxic	ity, acidification	potential, eutrophication	potential. Factors were	
	created using Florida-specific electricity grid.							
		SWOLF (FL)	7 LCI factors: climate change, energy use	e, water use, human t	oxicity, marine e	cotoxicity, acidification p	otential, eutrophication	
			potential. Factors were created using Flori	rida-specific electricity	y grid.		-	
		SWOLF (US)	7 LCI factors: climate change, energy use	e, water use, human t	oxicity, marine e	cotoxicity, acidification p	otential, eutrophication	
			potential. Factors were created using US	national average-spec	cific electricity gr	id.		
		WARM (FL)	2 LCI factors: climate change and energy	use. Factors were cr	eated using Flori	da-specific electricty grid		
		WARM (US)	2 LCI factors: climate change and energy	use. Factors were cr	eated using US	national average-specific	electricity grid.	
		Literature	Uses data from peer-reviewed published st	tudies and LCA study	reports. The LC	I factors vary depending (upon the material. Note:	
			For the two LCI factors, Jobs Produced	and Landfill Space	Use, the user n	nust select this model to	receive the outputs.	
			í í		-			
		L	4					I

Step 2:

Input mass data in US short tons in for each material category and its corresponding management approach. For example, if 20 tons of newspaper were collected, 5 of those tons were recycled landfilled then type "20" into cell E20, "10" into cell F20, and "15" into cell I20.

Material Category	Item No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landfill	Combustion	Che ma
MSW	1	Mixed MSW							
	2	Newspaper							1
	3	Corrugated Cardboard (OCC)							1
Paper	4	High Grade Paper (Office Type Paper)							
	5	Magazines/third-class mail]
	6	Mixed Paper							1
	7	HDPE]
Plastic	8	PET							1
	9	Mixed Plastic]
Glass	10	Glass							1
	11	Aluminum Cans							1

J

HC18/19 Workbook Tool

All Units (Gal./ Short Ton)

С

Water Use (Gallons): Freshwater from lakes, rivers, and wells are consumed by different processes. The units are expressed as units of gallons. This a measure of the water used in such way that the water is evaporated, incorporated into products, transferred to other watersheds, or disposed into the sea.

Material Category	Item No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landfill	Combustion
MSW	1	Mixed MSW	26.20	NA	NA	NA	(16.88)	(141.69)
	2	Newspaper	26.20	(542.48)	(10.80)	4.81	(21.40)	(434.87)
	3	Corrugated Cardboard (OCC)	26.20	91.54	(7.46)	(85.86)	(72.62)	(363.42)
Paper	4	High Grade Paper (Office Type Paper)	26.20	94.33	(5.84)	(152.76)	(155.33)	(333.90)
	5	Magazines/third-class mail	26.20	(272.97)	(19.18)	(74.60)	(19.36)	(331.20)
	6	Mixed Paper	26.20	(542.48)	(19.06)	(50.60)	(67.40)	(368.47)
	7	HDPE	26.20	113.32	NA	NA	30.62	(977.29)
Plastic	8	PET	26.20	(381.55)	NA	NA	30.65	(977.29)
	9	Mixed Plastic	26.20	NA	NA	NA	30.65	(1,027.86)
Glass	10	Glass	26.20	(46.66)	NA	NA	30.65	14.67
	11	Aluminum Cans	26.20	(7,964.58)	NA	NA	30.65	(3,939.95)
Metals	12	Steel/Tin Cans	26.20	(536.23)	NA	NA	30.65	(451.44)
	13	Mixed Metals	26.20	(4,250.36)	NA	NA	30.65	(4,116.48)
Organic	14	Yard Waste	26.20	NA	(138.54)	(19.87)	15.88	(173.96)
Organic	15	Food Waste	26.20	NA	(73.28)	(191.40)	(45.35)	(169.79)
	16	Tires	26.20	NA	NA	NIA	20.65	(704.95)
Other	17	Clothing and Footwear	26.20	NA	(292.15)	(6	nnact Ea	ctor Dage
	18	Electronics	26.20	NA	NA		прасс га	ciul rage
	19	Dimensional Lumber	26.20	NA	(84.81)	51	for Wat	or llco
	20	Asphalt Shingles	26.20	NA	NA			
Debrie	21	Gypsum Drywall	26.20	NA	NA		(Gal/To	n) for
Debris	22	Concrete	26.20	NA	NA			
	23	Reclaimed Asphalt Pavement	26.20	NA	NA		Selecte	ed LCA

UF

1

2

3

11 12 13

24

25 26 27

А

В

◀

3-Clim. Chan. (tCO2eq per Ton)

4-Energy Use (MJ per Ton)

5-Water Use (Gal per Ton)

6-Hum ... (+)

5

HC18/19 Workbook Tool

lutput data: able 1. limate Change xpressed as u nergy the emi	e (tCO ₂ ec inits of tC ssion of 1	1.): Greenhouse gases (GHG) abso Dzeq.of material to allow for comp ton of gas will absorb over a given	rb energy and slo arison of global ¥ period of time, re	¥ energy from es arming impacts of lative to the emis	caping into spac f different gases sions of 1 ton of (e which causes th relative to CO ₂ . T CO ₂ .	he Earth to This is a m	Dutput f	for Sele
Material Category	ltem No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landf	ategori	es Bas
MSW	1	Mixed MSW	3.6	-	-	-			
		Newspaper	-		-	-		User IN	lass D
Danar		Lorrugated Lardboard (ULL)	3.6	2.3	-	-			
гарег	4	Magazinashkid-slassmail	3.0	(20.4)	-	-	(5.2)	1 _	(2
		Magazinesi (hiru-ciassi haii Miyod Dopor	5.0	(20.4)			(0.0,	·	رک
	7	HNDF	36	- 11	-		0.9	-	
Plastic	- is	PFT	3.6	(77.6)	-	-	0.0	-	0
	9	Mixed Plastic	-	-	-	-		-	
Glass	10	Glass	3.6	(11.1)	-	-	0.9	-)
	11	Aluminum Cans	-	-	-	-	-	-	
Metals	12	Steel/Tin Cans	-	-	-	-	-	-	
	13	Mixed Metals	-	-	-	-	-	-	
Orazoio	14	Yard Waste	-	-	-	-	-	-	
organic	15	Food Waste	-	-	-	-	-	-	
	16	Tires	-	-	-	-	-	-	
Other	17	Clothing and Footwear	-	-	-	-	-	-	
	18	Electronics	-	-	-	-	-	-	
C&D Debris	19	Dimensional Lumber	-	-	-	-	-	-	
	20	Asphalt Shingles	-	-	-	-	-	-	
	21	Gypsum Drywall	-	-	-	-	-	-	
	22	Loncrete Dealaise ad Asabab Devez and	-	-	-	-	-	-	
	23	Reclaimed Asphait Pavement	-	-	-	-	-	-	

Table 2.

33

Energy Use (MJ): Energy is consumed by different processes, the units are expressed as MJ. This is a measure of the direct and indirect energy use throughout the life cycle and can include both renewable and non-renewable energy source.

34	the life cycle and can include both renewable and non-renewable energy source.									
35	Material Category	ltem No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landfill	Combustion	Total
36	MSW	1	Mixed MSW	225,905	-	-	-	13,699	-	239,604
37		2	Newspaper	-	-	-	-	-	-	-
38		3	Corrugated Cardboard (OCC)	225,905	19,720	-	-	4,088	-	249,713
39	Paper	4	High Grade Paper (Office Type Paper)	225,905	119,282	-	-	(10,173)	-	335,014
40		5	Magazines/third-class mail	225,905	(270,019)	-	-	13,270	-	(30,844)
41		6	Mixed Paper	-	-	-	-	-	-	-
42		7	HDPE	225,905	105,183	-	-	21,888	-	352,976
43	Plastic	8	PET	225,905	(988,332)	-	-	21,887	-	(740,540)
44		9	Mixed Plastic	-	-	-	-	-	-	-
45	Glass	10	Glass	225,905	(73,435)	-	-	21,887	-	174,356
46		11	Aluminum Cans	-	-	-	-	-	-	-
	Introduction 1-User Input		2-Sum	marv LCA (Dutput	3-Clim. Ch	nan. (tCO2e	a per Ton)	4-Ener	

Recycling Aluminum Cans GHG Emission Factor (tCO₂eq./ton)

Use the tool to measure waste management system footprints

For Florida 2018 Solid Waste Management System:

- GHG Emissions Footprint: -0.91 to -1.3 tCO₂eq./person
- Energy Use Footprint: -7,700 to -18,050 MJ/person
- Water Use Footprint : -800 gal/person
- Human Toxicity Footprint: -0.00021 to -0.00029 CTUh/person
- Ecotoxicity Footprint: -33 to -6,200 CTUe/person
- Eutrophication Footprint: -0.23 to 0.21 kgNeq./person
- Acidification Footprint: -7 to -10 kgSO₂eq./person

Note: Range is because we used SWOLF, WARM, and MSW-DST impact factors

Use the tool to evaluate other metrics for using environmental impacts in goal setting

Projects History

Updated WasteCalc Composition Studies

Input

Behind the Scenes

Recycled Tons					
Newspaper	Ferrous Metals				
Glass	White Goods				
Aluminum Cans	Non Ferrous Metals				
Plastic Bottles	Other Paper				
Steel Cans	Textiles				
Corrugated Boxes	C&D Debris				
Office Paper	Food Waste				
Yard Trash	Miscellaneous				
Other Plastics	Tires				
Landfilled Tons					

Combusted Tons

Collected C&D Tons

<u>Output</u>

% MSW Composition

Newspaper Glass Aluminum Cans Plastic Bottles Steel Cans **Corrugated Boxes Office Paper** Yard Trash Other Plastics Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous Tires

Tons MSW Composition

Composition Studies

Aucilla Landfill Area

Projects History

HC 19/20 Tasks

- Refinements to the WasteCalc model in a manner that retains its existing functionality
- Incorporate SMM using metrics to measure environmental, social, and economic impacts developed from the FY18/19 project, include new waste categories, and provide a means to better integrate source reduction activities
- Develop necessary support materials for future users and developers

ÜΕ

Incorporate SMM Using Metrics

Refinements to the 2019 WasteCalc Model

Input

Behind the Scenes

Recycled Tons						
Newspaper	Ferrous Metals					
Glass	White Goods					
Aluminum Cans	Non Ferrous Metals					
Plastic Bottles	Other Paper					
Steel Cans	Textiles					
Corrugated Boxes	C&D Debris					
Office Paper	Food Waste					
Yard Trash	Miscellaneous					
Other Plastics	Tires					
Landfilled Tons						
Combusted Tons						
Collected C&D Tons						
New	Input					

Options

New Outputs

<u>0</u>	u	t	p	U	t

% MSW

Composition

Newspaper

Aluminum Cans

Plastic Bottles Steel Cans

Corrugated Boxes Office Paper Yard Trash

Other Plastics Ferrous Metals White Goods

Other Paper

C&D Debris

Food Waste

Miscellaneous

Textiles

Tires

Non Ferrous Metals

Glass

Tons MSW Composition

UF

Integrate Source Reduction Activities

- Measure the mass of materials consumed for in previous years and compare to recent years
- Donation is a form of source reduction since materials are directly reused
 - Map the donation flow of materials

UF

Based on FDEP 18 categories and 2019 WasteCalc Estimates

Original FDEP Categories	New Categories
Newspaper	
Glass	
Aluminum Cans	
Plastic Bottles	HDPE and PET
Steel Cans	
Corrugated Boxes	
Office Paper	
Yard Trash	
Other Plastics	Mixed plastics
Ferrous Metals	Mixed metals
White Goods	Electronics
Non Ferrous Metals	Mixed metals
Other Paper	Mixed paper, magazines/third-class mail, and books
Textiles	Clothing and footwear
C&D Debris	Wood products, asphalt shingles, gypsum drywall, concrete, asphalt pavement
Food Waste	
Miscellaneous	Mixed MSW, electronics, and furniture
Tires	
Process Fuel	

2021 SMM Tool Walkthrough

Tool Beta Testing Feedback

Six Counties Invited (small, medium, and large)

No guidance provided other than the directions in the tool.

Feedback:

- Most counties do use WasteCalc
- All selected SWOLF Florida Specific mostly because it had the most indicators
- Not much confusion on directions
- More details on which model to select
- More clarification on how materials were broken up for SMM
- More explanation on what the difference between indicators are
- Confusion on purpose of collected data section
- All said their county can use the tool in their solid waste management planning, one said can be used for educational purposes (schools/residents)
- Training materials recommended: workshop, recorded walkthrough, webinar, multi-day training
- Questions on how tool measures success, how it measures against other counties, how measurement for different years are done

2021 SMM Tool Feedback

Integrate Source Reduction Activities: Textiles Donation

- Services will either put the item so sale, ship them overseas for resale, or dispose of them
- Data from Goodwill collected for Florida Total

Total Textiles Donated at Goodwill = ~3,000 Tons / Yr

Integrate Source Reduction Activities: Furniture Donations

- Most services do not measure mass sold or received of furniture
- Data from Goodwill collected for Florida Total
 - Total Furniture Donated at Goodwill = ~870,000 Tons / Yr

Integrate Source Reduction Activities: Electronics Donation

- Many manufactures recycle the donated electronics and do not refurbish for resale
- Data from Goodwill collected for Florida Total

Total Electronics Donated at Goodwill = ~200 Tons / Yr

UF

Integrate Source Reduction Activities: Food Donations

 Data from mostly Feeding Florida Food Banks and Heartland Farm Gleaner

UF

Challenges with Collecting Donation Data

- Most of this research was conducted during the COVID-19 pandemic, impact on donation flow quantities
- Many locations could not accurately quantify mass or volume of donations received
- Many service organizations contacted could not (proprietary data) provide the information needed for this research

Next Step: Develop Necessary Support Materials

- Training materials: *what should we do?*
- We will work with FDEP, local governments and the working group to test these training materials
- A series of case studies for several counties will be integrated into this exercise (currently have beta tested)
 - Open to anyone interested? Who?
- Work with FDEP to provide training statewide through a webinar or conference presentations. *Any other places?*

Next Step: General

- Officially release tool on UF website by June
- Publish accompanying report on UF website by June
 - Need volunteers for review, keep us in mind!

UF

https://faculty.eng.ufl.edu/timothy-townsend/research/floridasolid-waste-issues/tool-to-track-progress-toward-smm-goals/

Dr. T Sustai	Fimothy G. 7 inable Materials I	Fownsend Management Research Labo	ratory			f 🎔 🗖 in 🗃 😶				
RES	SEARCH	COURSES F	PUBLICATIONS	TEAM	CONTACT	МҮ ДЕРТ				
	<u>Hc</u>	ome • <u>Research</u>	• <u>Florida Solid W</u>	aste Issues	Tool to Track	CProgress Toward SMN	1 Goals			
	1	TOOL		RAC	K P R	OGRE	SS			
	1	rowa	RD S	MM	GO/	ALS				
			7	T	- 1 5 - 1 6		na a Davianta			
		SUSTAINABLE	An CES	Integrat	red Tool I	or Progi	ress Reports			
		CONSTRUCTION A DEMOLITION DEBR	ND Tra	.ck Mate	rials	Progress Progress	s Report 1: <u>HC19PR01</u> s Report 2: <u>HC19PR02</u>			

IJ

Thank You for Your Time!

Timothy G. Townsend, PhD, PE, Professor

352-392-0846

ttown@ufl.edu

https://faculty.eng.ufl.edu/timothy-townsend/

Malak Anshassi, PhD, El 813-385-6392 manshassi@ufl.edu

