

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

An Integrated Tool for Local Government to Track Materials Management and Progress toward Sustainability Goals

October 13th, 2020 University of Florida

Dr. Timothy Townsend, Jones Edmunds Professor Malak Anshassi, Graduate Research Assistant

Department of Environmental Engineering Sciences Engineering School of Sustainable Infrastructure and the Environment University of Florida, USA

Projects History

Hinkley Center Florida Solid Waste Management: State of the State (HC16/17 Project)

Florida's Recycling Rate

Florida Material Mass Flow (2016)

Florida Material Mass Flow (2016)

Generator Recycling Rates (2016)

Florida Material Cost Flow (2016)

Florida Material Cost Flow (2016)

Total Costs (not including Transfer Station): \$2.9 Billion Total Costs (including Transfer Station): \$3.2 Billion

Evaluating Reaching 75% Using Different Approaches

- 1. Waste-to-Energy (WTE) Approach
- 2. Mixed Waste Processing (MWP) Approach
- 3. Mandatory Residential Curbside Recycling Approach
- 4. Mandatory Construction & Demolition Debris (C&D) and Yard Trash (YT) Recycling Approach
- 5. Mandatory Non-Residential Food Waste Composting Approach

NOTE: Applied only to counties with populations of 150,000+

Impact on Recycling Rates (Percentage Points)

Impact on Costs (2016)

Impact on GHG Emissions (2016)

GHG Emissions

Using environmental impacts in goal setting

Importance of Source Reduction

Source: "Replacing Recycling Rates with Life-Cycle Metrics as Government Materials Management Targets" (Anshassi et al., 2018)

Historic Source Reduced Materials

MSW Material	2008 Generation	2015 Generation	Source reduced or
	(Tons/Person)	(Tons/Person)	2008?
Newspaper	0.0768	0.0508	Source Reduced
Glass	0.0423	0.0433	Source Generated
Aluminum Cans	0.0120	0.0097	Source Reduced
Plastic Bottles	0.0238	0.0230	Source Reduced
Steel Cans	0.0172	0.0154	Source Reduced
Corrugated Paper	0.1369	0.1276	Source Reduced
Office Paper	0.0433	0.0309	Source Reduced
Other Plastics	0.0610	0.0725	Source Generated
Other Paper	0.1091	0.1101	Source Generated
Textiles	0.0480	0.0379	Source Reduced
C&D Debris	0.3999	0.4867	Source Generated
Tires	0.0198	0.0120	Source Reduced

Cite This: Environ. Sci. Technol. 2018, 52, 6544-6554

pubs acs org/est

Replacing Recycling Rates with Life-Cycle Metrics as Government Materials Management Targets

Malak Anshassi, Steven Laux, and Timothy G. Townsend*9

Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, 333 New Engineering Building, P.O. Box 116450, Gainesville, Florida 32611-6450, United States

Supporting Information

ABSTRACT: In Florida, the passing of the Energy, Climate Change, and Economic Security Act of 2008 established a statewide mass-based municipal solid waste recycling rate goal of 75% by 2020. In this study, we describe an alternative approach to tracking performance of materials management systems that incorporates life-cycle thinking. Using both greenhouse gas (GHG) emissions and energy use as life-cycle indicators, we create two different materials management baselines based on a hypothetical 75% recycling rate in Florida in 2008. GHG emission and energy use footprints resulting from various 2020 materials management strategies are compared to these baselines, with the results normalized to the same mass-based 75% recycling rate. For most scenarios,

LCI-normalized recycling rates are greater than mass-based recycling rates. Materials management strategies that include recycling of curbside-collected materials such as metal, paper, and plastic result in the largest GHG- and energy-normalized recycling rates. Waste prevention or increase, determined as the net difference in per-person mass discard rate for individual materials, is a major contributor to the life-cycle-normalized recycling rates. The methodology outlined here provides policy makers with one means of transitioning to life-cycle thinking in state and local waste management goal setting and planning.

INTRODUCTION

State and local governments in the United States (US) commonly rely on mass-based municipal solid waste (MSW) recycling rate goals or targets to promote sustainable materials management (SMM) and landfill diversion. These goals are typically established by state legislatures or local governments and apply to waste materials generated by households, institutions, and businesses. Examples of these goals include South Carolina (40% recycling),1 Maryland (55% recycling),2 Florida (75% recycling),3 and San Francisco (zero waste),4 all to be reached by 2020. These recycling rates correspond to the mass of material recycled (or diverted from landfill disposal in some cases) divided by the total mass generated. While providing a tangible target that can be tracked over time to quantify progress, the recycling rate metric suffers from several inherent problems.5-7 First, a reduction in the overall mass of materials discarded, referred to in this paper as waste prevention (commonly called source reduction by the waste management community) and the most desired step in the waste management hierarchy, 6,8-10 is not appropriately recomized in mass-based recurling rates. For example a A second problem with mass-based recycling goals is that they favor heavier materials without considering the environmental benefits gained through recycling. In reality, the recycling of some waste components produces much greater environmental benefits (e.g., avoidance of greenhouse gas (GHG) emissions and energy use) than others.^{11–13} For example, recycling aluminum cans and office paper provides a considerably greater GHG emission and energy use avoidance than recycling (in some cases through composting) equivalent masses of glass, yard trash (YT), or food waste.¹⁴ Also, a singular reliance on recycling rates neglects the positive contributions from other SMM approaches, including changes in product and packaging design, the recovery of energy from waste (EfW), and the implementation of more sustainable landfill practices.¹³

This study examines a different approach to mass-based recycling rates for quantifying and tracking progress toward SMM. One potential alternative is to measure materials management progress relative to the mass of material recycled or landfilled at an initial point in time. For example, California has established a statewide recycling goal corresponding to 75%

Projects History

Updated WasteCalc Functionality

<u>Input</u>

Behind the Scenes

Recycle	ed Tons						
Newspaper	Ferrous Metals						
Glass	White Goods						
Aluminum Cans	Non Ferrous Metals						
Plastic Bottles	Other Paper						
Steel Cans	Textiles						
Corrugated Boxes	C&D Debris						
Office Paper	Food Waste						
Yard Trash	Miscellaneous						
Other Plastics	Tires						
Landfilled Tons							
Combus	ted Tons						

Collected C&D Tons

Output

% MSW Composition Newspaper Glass Aluminum Cans **Plastic Bottles** Steel Cans **Corrugated Boxes Office Paper** Yard Trash **Other Plastics** Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous Tires

Tons MSW Composition Newspaper Glass Aluminum Cans Plastic Bottles Steel Cans **Corrugated Boxes Office Paper** Yard Trash Other Plastics Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous Tires

Updates or new components to WasteCalc

10/13/2020

Projects History

HC 18/19 Project Objectives

- **Develop a publicly available LCA tool** used to measure and compare social, economic, and environmental impacts for various Florida solid waste management approaches.
- Develop additional lifecycle impact (LCI) factors (e.g., energy use, emissions, etc.) that will allow users to consider a wider variety of impacts associated with various materials management approaches.

IJF

Workbook-Based LCA Tool

LCI Factors

Methods of Obtaining Environmental-Based LCI Factors

Version 15 Waste Reduction Model (WARM) Inputs	
Use this worksheet to describe the baseline and alternative waste management scenarios that you want to compare. The blue shaded areas indicate where you need to enter information. Please enter data in short tons (1 short ton = 2,000 lbs.)	
1. Describe the baseline generation and management for the waste materials listed below. 2. Describe the alternative management scenario for the waste materials generated in your community or you do not want to analyze it, leave Any decrease in generation should be entered in the Source Reduction colum it blank or enter 0. Make sure that the total quantity generated equals the total quantity managed. Any increase in generation should be entered in the Source Reduction colum Make sure that the total quantity generated equals the total quantity managed. Make sure that the total quantity generated equals the total quantity managed.	rated in the baseline. nn. na as a negative value. d. Tons
Tons Tons Tons Tons Anacrobically Tons Tons Tons Tons Tons Aracrobically Material Type Material Recycled Landfilled Combusted Composted Digested Generated Recycled Landfilled Composted Composted	naerobically Digested
 3. In order to account for the avoided electricity-related emissions in the landfilling and combustion pathways, EPA assigns the appropriate regional "marginal" electricity grid mix emission factor based on your lock Select state for which you are conducting this analysis. Please select state or select national average: National Average Region Location: National Average 4. To estimate the benefits from source reduction, EPA usually assumes that the material that is source reduced would have been manufactured from the current mix of virgin and recycled inputs. However, you may choose to estimate the emission reductions from source reduction under the assumption that the material would have been manufactured from 100% virgin inputs in order to obtain an upper bound estimate of the benefits from source reduction. Select which assumption you want to use in the analysis. Note that for materials for which information on the share of recycled inputs used in production i or is not a common practice; EPA assumes that the current mix is comprised of 100% virgin inputs. Consequently, the source reduction benefits of both the "Current mix" and "100% virgin" inputs are the same. Imaginal Current Mix Imaginal Current Mix Imaginal Average 	ation. s unavailable
5. The emissions from landfilling depends on whether the landfill where your waste is disposed has a landfill gas (LFG) control system. If you do not know whether your landfill has LFG control, select "National Average" to calculate emissions based on the estimated proportions of landfills with LFG control in 2012 and proceed to question 7. If your landfill does not have a LFG system, select "No LFG Recovery" and proceed to question 8. If a LFG system is in place at your landfill, select "LFG Recovery" and click one of the options in 6a to indicate whether LFG is recovered for energy or flared.	
National Average D LFG Recovery No LFG Recovery	
6a. If your landfill has gas recovery, does it recover the methane for energy or flare it?	
Recover for energy Flare	

EPA Waste Reduction Model (WARM) User Input

Material	GHG Emissions per Ton of Material Source Reduced (MTCO₂E)	GHG Emissions per Ton of Material Recycled (MTCO₂E)	GHG Emissions per Ton of Material Landfilled (MTCO₂E)	GHG Emissions per Ton of Material Combusted (MTCO₂E)	GHG Emissions per Ton of Material Composted (MTCO₂E)	GHG Emission per Ton of Material Anaerobically Digested (MTCO₂E)
Corrugated Containers	(5.58)	(3.14)	0.25	(0.49)	NA	NA
Magazines/third-class mail	(8.57)	(3.07)	(0.40)	(0.36)	NA	NA
Newspaper	(4.68)	(2.71)	(0.82)	(0.56)	NA	NA
Office Paper	(7.95)	(2.87)	1.24	(0.47)	NA	NA
Phonebooks	(6.17)	(2.63)	(0.82)	(0.56)	NA	NA
Textbooks	(9.02)	(3.11)	1.24	(0.47)	NA	NA
Mixed Paper (general)	(6.07)	(3.55)	0.14	(0.49)	NA	NA
Mixed Paper (primarily residential)	(6.00)	(3.55)	0.08	(0.49)	NA	NA
Mixed Paper (primarily from offices)	(7.37)	(3.58)	0.18	(0.45)	NA	NA
Food Waste	(3.66)	NA	0.54	(0.14)	(0.18)	(0.04)
Food Waste (non-meat)	(0.76)	NA	0.54	(0.14)	(0.18)	(0.04)
Food Waste (meat only)	(15.10)	NA	0.54	(0.14)	(0.18)	(0.04)
Beef	(30.09)	NA	0.54	(0.14)	(0.18)	(0.04)
Poultry	(2.45)	NA	0.54	(0.14)	(0.18)	(0.04)
Grains	(0.62)	NA	0.54	(0.14)	(0.18)	(0.04)
Bread	(0.66)	NA	0.54	(0.14)	(0.18)	(0.04)
Fruits and Vegetables	(0.44)	NA	0.54	(0.14)	(0.18)	(0.04)
Dairy Products	(1.75)	NA	0.54	(0.14)	(0.18)	(0.04)
Yard Trimmings	NA	NA	(0.18)	(0.17)	(0.15)	(0.09)
ârass	NA	NA	0.13	(0.17)	(0.15)	0.00
.eaves	NA	NA	(0.52)	(0.17)	(0.15)	(0.15)
Branches	NA	NA	(0.50)	(0.17)	(0.15)	(0.23)
HDPE	(1.42)	(0.86)	0.02	1.28	NA	NA
LDPE	(1.80)	NA	0.02	1.29	NA	NA
PET	(2.17)	(1.15)	0.02	1.24	NA	NA

EPA Waste Reduction Model (WARM) Results Output

🖷 RTI International - Municipal Solid Waste Decision Support Tool: Case Scenario (d) File Help Advanced Define Select Select Report Build Set Process Set Diversion Solve and View Specify Model Generation Processes Options Process Inputs Constraints Targets Reports Save and Build Model Specify Process Inputs Enter Values or Accept All Defaults. Visited forms are marked in blue and saved forms are marked in green. - Scenario ^ Enter Residential Waste Stream Fractions: Sector 1 - Solid Waste Generation Solid Waste Stream Composition Residential Waste Stream Fractions: Sector 1 Residential Waste Stream Fractions: Sector 2 Enter site-specific waste composition information to replace the default U.S. national average values provided. Waste co entered as mass fractions, based on wet weights. Any user-entered values must maintain a total sum of 1 (100%) for all Multifamily Waste Stream Fractions: Sector 1 Multifamily Waste Stream Fractions: Sector 2 Commercial Waste Stream Fractions: Sector 1 Commercial Waste Stream Fractions: Sector 2 Commercial Waste Stream Fractions: Sector 3 Parameter Description Value Units Commercial Waste Stream Fractions: Sector 4 Commercial Waste Stream Fractions: Sector 5 Solid Waste Properties Solid Waste Density Leaves fraction of 1 0.04 Solid Waste Heating Value Solid Waste Ash Content Solid Waste Combustion Efficiency Grass fraction of 1 0.054 Solid Waste Water Content Energy Electrical Energy < Select Regional Electricity Grid User Defined Regional Electricity Grid Mix User Defined Regional Grid Generation Efficiencies Save **Restore Defaults** Regional Displacement Fuel Definition Energy Cost and Revenues The second second second second

EPA/RTI Municipal Solid Waste Decision Support Tool (MSW-DST) User Input²⁵

	А	В	с	D	E	F	G	Н	
1				10-0-1					
2		Cost/LCI Report for All	I Unit Processes by Spec	cific Sector		Carbon D	ioxide Fossil		
4				Carbon Dioxide Fossil	2.50	0.000			
5			Collection	1,360,000	j 2,000	0,000			
6			Transfer	0	≦ 1,500 9 1,000	0,000			
7			Separation	0	£ 50	0,000			
8			Treatment	0	03	0			
9			Disposal	941,000	P S Q	ction ster ation	ment posal artati.	utact. Total	
10			Transportation	0		Colles Tran ceparts	reath Dist anspo ana	Nº Net	
11			Remanufacturing	0		,	110 Pe		
12			Net Total	2,300,000					
13									
14									
15									_
16		Name		Mixed MSW	Landfill				
17		Node Type		Collection	Disposal	Transportation	Remanufacturing	Total	
18		Sector Name		Residential Sector 1					
19									
20		Cost	\$/year	6,670,000	3,820,000) ()	0 10,500,	,000,
21		Energy Consumption	MMBTU/year	33,500	57,500) ()	0 91,	,000,
22		Total Particulate Matter	lbs Total PM/year	325	1,150) ()	0 1,	,480
23		Nitrogen Oxides	lbs NOx/year	21,000	13,200) ()	0 34,	,200
24		Hydrocarbons (non CH4)	lbs HC/year	5,640	3,200) ()	0 8,	,840
25		Sulfur Oxides	lbs SOx/year	2,740	2,370) ()	0 5,	,110
26		Carbon Monoxide	lbs CO/year	9,530	4,880) ()	0 14,	,400
27		Carbon Dioxide Biogenic	lbs CO2 Bio/year	643	232	2 ()	0	875
28		Carbon Dioxide Fossil	lbs CO2 Fossil/year	1,360,000	941,000) ()	0 2,300,	,000,
29		Ammonia (Air)	lbs NH4 (Air)/year	0	2	2 0)	0	2
30		Lead (Air)	lbs Pb (Air)/year	0	() ()	0	0
31		Methane (CH4)	lbs CH4/year	430	186	i ()	0	616
32		Hydrochloric Acid	lbs HCl/year	3	1	2 ()	0	5
33		Carbon Equivalents	tons C-eq/year	187	129) ()	0	316
34		Solid Waste 1	Ibs SW1/year	n/a	n/a	n/a	n/a		0
35		Solid Waste 2	Ibs SW2/year	n/a	n/a	n/a	n/a		0
36		Solid Waste 3	Ibs SW3/year	n/a	n/a	n/a	n/a		0
37		Solid Waste 4	Ibs SW4/year	n/a	n/a	n/a	n/a		0
38		Solid Waste 5	Ibs SW5/year	n/a	n/a	n/a	n/a	0 10	0
39		Total Solid Waste	lbs Switotal/year	14,400	5,160			0 19,	,000
40		Dissolved Solids	lbs b5/year	3,680	1,320			0 S,	150
41		suspended solids	lbs BOD/year	84	05			0	104
42		COD	lbs COD/year	14	10			0	195
45		Oil	lbs CoD/ year	92	22.100			0 22	200
	Þ	MassFlows Recycling	Cost_LCI TRACI (÷					:

EPA/RTI Municipal Solid Waste Decision Support Tool (MSW-DST) Results Output²⁶

Solid Waste O	ptimization Life-cycle Framework								
Accounting Mod	de Tool								
Developed at North	Carolina State University								
System Innuts			Continue Scenario nd Continues from e save point						
System inputs									
Scenario name:	Landfill								
			Continue						
Starting Process:	Landfill	New Scenario	Scenario						
		Clears all data and	Continues from						
		starts from the	save point						
		beginning							
Additional resource	es								
Additional model docum	entation and publications can be found at the SWOLF website								
go.ncsu.edu/SWOL	<u>E</u>								
Change log and ver	sion								
Date	Changes	Version #							
August 11, 2016	Initial release of evaluation version.	0.9							
November 30, 2016	Updated collection models and calculations.	0.9.1							
December 13, 2016	Updated calculations for other modes of internodal transportation	0.9.2							
February 10, 2017	Added Continue Scenario option	0.9.3							
March 26, 2018	Added additional error checking and removed mixed waste collection.	0.9.4							
April 3, 2019	Made additional to models and calculations.	0.9.5							

NCSU Solid Waste Optimization Framework (SWOLF) User Input

LCIA Outputs										
										Landfill
Impacts	Total	Collection	Transportation	Separation	AD	Composting	WTE	Landfill	Reprocessing	LF1
IPCC 2007 climate change GWP 100a	40,314,742	0	0	0	0	0	0	40,314,742	0	40,314,742
cumulative energy demand fossil non-renewable energy resources, fossil	152,967,548	0	0	0	0	0	0	152,967,548	0	152,967,548
TRACI environmental impact acidification	1,179,201	0	0	0	0	0	0	1,179,201	0	1,179,201
TRACI environmental impact eutrophication	6,180	0	0	0	0	0	0	6,180	0	6,180
TRACI environmental impact photochemical oxidation	57,144	0	0	0	0	0	0	57,144	0	57,144
USEtox ecotoxicity total	9,665,260	0	0	0	0	0	0	9,665,260	0	9,665,260
USEtox human toxicity total	1	0	0	0	0	0	0	1	0	1
Cost (\$)	1731000.606	0	0	0	0	0	0	1731000.606	0	1731000.606
	-									
Mass Flows Costs LCI Outputs LCIA Outputs	•									

NCSU Solid Waste Optimization Framework (SWOLF) Results Output

Methods of Obtaining Environmental-Based LCI Factors

Landfill Space Savings

Density at 10,000 lbs.

Methods of Obtaining Environmental-Based LCI Factors

HC18/19 Workbook Tool

Workbook Tool Introduction Screen for Users

Iorida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Materials Management Recycling Rates in Florida

Welcome to the Hinkley Center for Solid and Hazardous Waste Management Funded SMM Workbook Tool!

This tool is an outcome of the Hinkley Center funded project titled, "Looking beyond Florida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Materials Management Recycling Rates in Florida". In a previous Hinkley Center project titled, "Florida Solid Waste Management: State of the State", researchers from the University of Florida estimated the material mass flow for the Florida solid wase stream and conducted a comprehensive analysis on the economic costs and environmental footprints associated with the 2016 waste stream. The researchers also conducted an evaluation of alternative waste management strategies upon the recycling rate, economic costs, and environmental footprint. The alternative waste management strategies were based on the concept of sustainable materials management (SMM). SMM originated in a 2002 EPA publication entitled "Beyond RCRA: Waste and Materials Management in the Year 2020." In 2009, EPA further developed the idea in "Sustainable Materials Management: The Road Ahead," which presented a roadmap for moving toward SMM. In these and other documents, SMM is characterized as a varying set of resource-efficient actions to be taken across the entire lifecycle of a material or product — from extraction through refinement, manufacturing, assembly, distribution, use, and end-of-life management. SMM, then, focuses on identifying best material management practices based on environmental, economic, and social impacts. Lifecycle assessment (LCA) models are tools that measure those impacts, and policymakers use LCA results to make SMM-informed decisions. In effort to continue this research, University of Florida researchers evaluated various US-developed LCA models and literature to create lifecycle impact (LCI) factors that can be used to measure the impacts of a community's waste management practices as part of the "Looking beyond Florida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Materials Management Recycling Rates in

To read more on the scope of this project and documentation of this tool please visit:

https://www.essie.ufl.edu/home/townsend/research/florida-solid-waste-issues/hc18/

To read more about the previous project please visit:

https://www.essie.ufl.edu/home/townsend/research/florida-solid-waste-issues/hc16/

This workbook tool provides local government and other users the opportunity to measure the impacts of their solid waste management practices. Below is a description of the components of this workbook tool.

	Tab No.	Tab Ti	tle	Tab Description		
	1	User In	put	User must complete Steps 1	and 2. Step 1 permits the user to select from sev	ven models, which are used to
		Ι,		estimate LCL factors The LC	I factors are specifically associated with each mo	del In Step 2 the user must enter the
nt	troduct	tion	1-User Input	2-Summary LCA Output	3-Clim. Chan. (tCO2eq per Ton)	4-Energy (+) 🗄 🖪

6 7 8

9

10 11

12

13

HC18/19 Workbook Tool

A	В	С	D	E	F	G	User Inpu	t Page to
	User Directions:						Select I C	Δ Model
	Step 1:							
	From the drop-down	n window to the rig	ht please select the model preference.	SWOLF (US)			and Innut	Mace Data
	Note: See below for	or a description o	f each model. All models are US-based L	LCA models specifo	ally created for	US LCA study use.	anu mput	iviass Dala
		Model	Description of LCI Factors That Can be	Estimated When	Selecting Mode			
		MSWDST (FL)	5 LCI factors: climate change, human toxi	icity, marine ecotoxio	city, acidification	potential, eutrophication	potential. Factors were	
			created using Florida-specific electricity g	rid.				
		SWOLF (FL)	7 LCI factors: climate change, energy use	, water use, human t	toxicity, marine e	cotoxicity, acidification p	otential, eutrophication	
			potential. Factors were created using Flori	ida-specific electricit	y grid.			
		SWOLF (US)	7 LCI factors: climate change, energy use	, water use, human t	toxicity, marine e	cotoxicity, acidification p	otential, eutrophication	
		× ′	potential. Factors were created using US I	national average-spe	cific electricity gr	rid.	· · ·	
		WARM (FL)	2 LCI factors: climate change and energy	use. Factors were ci	reated using Flori	ida-specific electricty grid		
		WARM (US)	2 LCI factors: climate change and energy	use. Factors were ci	reated using US I	national average-specific	electricity grid.	
		Literature	Uses data from peer-reviewed published st	tudies and LCA stud	y reports. The LC	I factors vary depending (upon the material. Note:	
			For the two LCI factors, Jobs Produced	and Landfill Space	Use, the user n	nust select this model to	receive the outputs.	
					-		· · · ·	
		L	•					

Step 2:

Input mass data in US short tons in for each material category and its corresponding management approach. For example, if 20 tons of newspaper were collected, 5 of those tons were recycled landfilled then type "20" into cell E20, "10" into cell F20, and "15" into cell I20.

Material Category	Item No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landfill	Combustion	Che ma
MSW	1	Mixed MSW							
	2 Newspaper 3 Corrugated Cardboard (OCC)								1
									1
Paper	4	High Grade Paper (Office Type Paper)							
	5	Magazines/third-class mail]
	6	Mixed Paper							1
	7	HDPE]
Plastic	8	PET							1
	9	Mixed Plastic]
Glass	10	Glass							1
	11	Aluminum Cans							1

J

HC18/19 Workbook Tool

All Units (Gal./ Short Ton)

С

Water Use (Gallons): Freshwater from lakes, rivers, and wells are consumed by different processes. The units are expressed as units of gallons. This a measure of the water used in such way that the water is evaporated, incorporated into products, transferred to other watersheds, or disposed into the sea.

Material Category	Item No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landfill	Combustion
MSW	1	Mixed MSW	26.20	NA	NA	NA	(16.88)	(141.69)
	2	Newspaper	26.20	(542.48)	(10.80)	4.81	(21.40)	(434.87)
	3	Corrugated Cardboard (OCC)	26.20	91.54	(7.46)	(85.86)	(72.62)	(363.42)
Paper	4	High Grade Paper (Office Type Paper)	26.20	94.33	(5.84)	(152.76)	(155.33)	(333.90)
	5	Magazines/third-class mail	26.20	(272.97)	(19.18)	(74.60)	(19.36)	(331.20)
	6	Mixed Paper	26.20	(542.48)	(19.06)	(50.60)	(67.40)	(368.47)
	7	HDPE	26.20	113.32	NA	NA	30.62	(977.29)
Plastic	8	PET	26.20	(381.55)	NA	NA	30.65	(977.29)
	9	Mixed Plastic	26.20	NA	NA	NA	30.65	(1,027.86)
Glass	10	Glass	26.20	(46.66)	NA	NA	30.65	14.67
	11	Aluminum Cans	26.20	(7,964.58)	NA	NA	30.65	(3,939.95)
Metals	12	Steel/Tin Cans	26.20	(536.23)	NA	NA	30.65	(451.44)
	13	Mixed Metals	26.20	(4,250.36)	NA	NA	30.65	(4,116.48)
Organio	14	Yard Waste	26.20	NA	(138.54)	(19.87)	15.88	(173.96)
Organic	15	Food Waste	26.20	NA	(73.28)	(191.40)	(45.35)	(169.79)
	16	Tires	26.20	NA	NA	NIA	20.05	(704.95)
Other	17	Clothing and Footwear	26.20	NA	(292.15)	(6	nnact Ea	ctor Dage
	18	Electronics	26.20	NA	NA		прасс га	CLUI Page
	19	Dimensional Lumber	26.20	NA	(84.81)	51	for Wat	or llco
0.00	20	Asphalt Shingles	26.20	NA	NA			
Debrie	21	Gypsum Drywall	26.20	NA	NA		(Gal/To	n) for
Deblis	22	Concrete	26.20	NA	NA			
	23	Reclaimed Asphalt Pavement	26.20	NA	NA		Selecte	ed LCA

5

UF

1

2

3

11 12 13

24

25 26 27

А

В

◀

3-Clim. Chan. (tCO2eq per Ton)

4-Energy Use (MJ per Ton)

5-Water Use (Gal per Ton)

6-Hurr ... (+)

HC18/19 Workbook Tool

Output data: able 1. Climate Change xpressed as u nergy the emi:	e (tCO2ec nits of tC ssion of 1	1.): Greenhouse gases (GHG) abso Ozeq.of material to allow for comp ton of gas will absorb over a given	rb energy and slo arison of global ¥ period of time, re	energy from es arming impacts of lative to the emis	caping into spac f different gases sions of 1 ton of (e which causes th relative to CO ₂ . T CO ₂ .	he Earth to This is a m	Dutput 1 LCA ar	for Selend Imp
Material Category	ltem No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landf	ategori	es Bas
MSW	1	Mixed MSW	3.6	-	-	-			A
	2	Newspaper	-	-	-	-		User I	viass D
Danar		Lorrugated Lardboard (ULL)	3.0	2.3	-	-			
Faper	4	Magazinag/hist-alass mail	3.0	(20.4)	-	-	(5.2)	d _	(2
		Magazinesi (hiru-ciassi haii Miyod Dopor	5.0	(20.4)			(0.0,	·	(2
	7		36	- 11		-	0.9	-	
Plastic	8	PFT	3.6	(77.6)	_		0.0	-	(7
Plastic	- ğ	Mixed Plastic	-	-	-	-		-	
Glass	10	Glass	3.6	(11.1)	-	-	0.9	-) I
	11	Aluminum Cans	-	-	-	-	-	-	
Metals	12	Steel/Tin Cans	-	-	-	-	-	-	
	13	Mixed Metals	-	-	-	-	-	-	
Organic	14	Yard Waste	-	-	-	-	-	-	
organic	15	Food Waste	-	-	-	-	-	-	
	16	Tires	-	-	-	-	-	-	
Other	17	Clothing and Footwear	-	-	-	-	-	-	
	18	Electronics	-	-	-	-	-	-	
CAD D-Late	19	Dimensional Lumber	-	-	-	-	-	-	
	20	Asphalt Shingles	-	-	-	-	-	-	
Can Depris	21	Gypsum Drywall	-	-	-	-	-	-	
	22	Loncrete Dealaise ad Asabab Devenues t	-	-	-	-	-	-	
	23	Reclaimed Asphait Pavement	-	-	-	-	-	-	

Table 2.

Energy Use (MJ): Energy is consumed by different processes, the units are expressed as MJ. This is a measure of the direct and indirect energy use throughout the life cycle and can include both renewable and non-renewable energy source.

34	the life cycle and can include both renewable and non-renewable energy source.									
35	Material Category	ltem No.	Material Type	Collection	Recycling	Composting	Anaerobic Digestion	Landfill	Combustion	Total
36	MS₩	1	Mixed MSW	225,905	-	-	-	13,699	-	239,604
37		2	Newspaper	-	-	-	-	-	-	-
38		3	Corrugated Cardboard (OCC)	225,905	19,720	-	-	4,088	-	249,713
39	Paper	4	High Grade Paper (Office Type Paper)	225,905	119,282	-	-	(10,173)	-	335,014
40		5	Magazines/third-class mail	225,905	(270,019)	-	-	13,270	-	(30,844)
41		6	Mixed Paper	-	-	-	-	-	-	-
42		7	HDPE	225,905	105,183	-	-	21,888	-	352,976
43	Plastic	8	PET	225,905	(988,332)	-	-	21,887	-	(740,540)
44		9	Mixed Plastic	-	-	-	-	-	-	-
45	Glass	10	Glass	225,905	(73,435)	-	-	21,887	-	174,356
46		11	Aluminum Cans	-	-	-	-	-	-	-
-	▶ In	trodu	ction 1-User Input	2-Sum	narv LCA (Dutput	3-Clim. Ch	nan. (tCO2e	eg per Ton)	4-Ener

10/13/2020

Recycling Aluminum Cans GHG Emission Factor (tCO₂eq./ton)

Use the tool to evaluate best materials management approaches in Florida

Hypothetical: 100,000 Tons with two varying compositions and desired to be anaerobically digested

Use the tool to evaluate other metrics for using environmental impacts in goal setting

Use the tool to measure waste management system footprints

For Florida 2018 Solid Waste Management System:

- GHG Emissions Footprint: -0.91 to -1.3 tCO₂eq./person
- Energy Use Footprint: -800 gal/person
- Water Use Footprint : -7,700 to -18,050 MJ/person
- Human Toxicity Footprint: -0.00021 to -0.00029 CTUh/person
- Ecotoxicity Footprint: -33 to -6,200 CTUe/person
- Eutrophication Footprint: -0.23 to 0.21 kgNeq./person
- Acidification Footprint: -7 to -10 kgSO₂eq./person

Note: Range is because we used SWOLF, WARM, and MSW-DST impact factors

Projects History

Aucilla Landfill Area

10/13/2020

Updated WasteCalc Composition Studies

Input

Behind the Scenes

Recycled Tons				
Newspaper	Ferrous Metals			
Glass	White Goods			
Aluminum Cans	Non Ferrous Metals			
Plastic Bottles	Other Paper			
Steel Cans	Textiles			
Corrugated Boxes	C&D Debris			
Office Paper	Food Waste			
Yard Trash	Miscellaneous			
Other Plastics	Tires			
Landfilled Tons				

Combusted Tons

Collected C&D Tons

<u>Output</u>

% MSW Composition

Newspaper Glass Aluminum Cans Plastic Bottles Steel Cans **Corrugated Boxes Office Paper** Yard Trash Other Plastics Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous Tires

Tons MSW Composition

Newspaper
Glass
Aluminum Cans
Plastic Bottles
Steel Cans
Corrugated Boxes
Office Paper
Yard Trash
Other Plastics
Forrous Motols
Ferrous Metals
White Goods
White Goods Non Ferrous Metals
White Goods Non Ferrous Metals Other Paper
White Goods Non Ferrous Metals Other Paper Textiles
White Goods Non Ferrous Metals Other Paper Textiles C&D Debris
White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste
White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous

Projects History

- Refinements to the WasteCalc model in a manner that retains its existing functionality
- Incorporate SMM using metrics to measure environmental, social, and economic impacts developed from the FY18/19 project, include new waste categories, and provide a means to better integrate source reduction activities
- Develop necessary support materials for future users and developers

ÜΕ

Refinements to the WasteCalc model

Input

Behind the Scenes

Recycled Tons				
Newspaper	Ferrous Metals			
Glass	White Goods			
Aluminum Cans	Non Ferrous Metals			
Plastic Bottles	Other Paper			
Steel Cans	Textiles			
Corrugated Boxes	C&D Debris			
Office Paper	Food Waste			
Yard Trash	Miscellaneous			
Other Plastics	Tires			

Landfilled Tons

Combusted Tons

Collected C&D Tons

0	U	t	n	ui
\simeq	<u> </u>	-	2	-

% MSW

Composition

Glass

Tires

Tons MSW

Newspaper Aluminum Cans Plastic Bottles Steel Cans **Corrugated Boxes Office Paper** Yard Trash **Other Plastics** Ferrous Metals White Goods Non Ferrous Metals Other Paper Textiles C&D Debris Food Waste Miscellaneous

Composition			
Newspaper			
Glass			
Aluminum Cans			
Plastic Bottles			
Steel Cans			
Corrugated Boxes			
Office Paper			
Yard Trash			
Other Plastics			
Ferrous Metals			
White Goods			
Non Ferrous Metals			
Other Paper			
Textiles			
C&D Debris			
Food Waste			
Miscellaneous			
Tires			

Output the Tons of MSW Collected, Recycled, Landfilled, Composted, Combusted

Incorporate SMM Using Metrics

Integrate Source Reduction Activities

- Measure the mass of materials consumed for in previous years and compare to recent years
- Donation is a form of source reduction since materials are directly reused
 - Map the donation flow of materials

Integrate Source Reduction Activities: Textiles Donation

- Year-end reports from donation services (e.g., Goodwill, ESOL Closet)
- Services will either put the item so sale, ship them overseas for resale, or dispose of them
- Data from Goodwill collected for Florida Total

			Total
2020	Apparel (lbs.)	Linens (lbs.)	(lbs.)
Jan	431852	115628	547480
Feb	367108	91557	458665
Mar	470895	80836	551731
Apr	366281	56776	423057
May	386510	74567	461077
Jun	403259	96312	499571
Jul	452794	124510	577304
		Total	3518885

1

Total Textiles Donated at Goodwill = ~3,000 Tons / Yr

Integrate Source Reduction Activities: Furniture Donations

- Year-end reports from donation services (e.g., **Goodwill**, Habitat for Humanity ReStore)
- Most services do not measure mass sold or received of furniture
- Data from Goodwill collected for Florida Total

	Bric Brac/Wares	Metal	Kitchen	
2020	(lbs.)	(lbs.)	Wares (lbs.)	Total (lbs)
Jan	41256	127718	12340	181314
Feb	41297	95526	10335	147158
Mar	25794	101646	10069	137509
Apr	1743	159760	8636	170139
May	4802	105783	8862	119447
Jun	9332	104583	9679	123594
Jul	14606	106342	13743	134691
			Total	1013852

Total Furniture Donated at Goodwill = ~870,000 Tons / Yr

Integrate Source Reduction Activities: Electronics Donation

- Year-end reports from manufactures and donation services
- Many manufactures recycle the donated electronics and do not refurbish for resale
- Data from Goodwill collected for Florida Total

		Electrical		Total	
2020	Computers (lbs.)	(lbs.)	Phones (lbs.)	(lbs)	
Jan	19223	22125	0	41348	
Feb	30183	29797	0	59980	
Mar	7603	9935	0	17538	
Apr	19655	19843	0	39498	
May	9123	9649	0	18772	
Jun	8124	9803	0	17927	
Jul	21880	21945	339	44164	
10/11	/2020		Total	239227	

Total Electronics Donated at Goodwill = ~200 Tons / Yr

UF

Integrate Source Reduction Activities: Food Donations

- Year-end reports from donation services (e.g., Feeding Florida Food Banks, local food pantries)
- Many manufactures recycle the donated electronics and do not refurbish for resale
- Data from mostly Feeding Florida Food Banks and Heartland Farm Gleaner

Total Food Donated = ~149,000 Tons / Yr

UF

Challenges with Donation Data

- This research was conducted during the COVID-19 pandemic, impact on donation flow quantities
- Many locations could not accurately quantify mass or volume of donations received
- Many service organizations contacted could not (because of COVID or proprietary data) provide the information needed for this research

Develop Necessary Support Materials

- Training materials for the refined model will be developed
- We will work with FDEP, local governments and the working group to test these training materials
- A series of case studies for several counties will be integrated into this exercise
- Work with FDEP to provide training statewide through a webinar or conference presentations.
- Following each training event we expect to receive feedback or comments that will be used in potential model refinement.

UF

Bulky Waste Reuse

- Let's say we want to incorporate better collection services to encourage source reduction.
 - We looked at two alternative systems:
 - 1) Separate food collection for composting
 - 2) Separate bulky waste collection for refurbishment

Bulky Waste Reuse

Bulky Waste Reuse

35

What is the additional cost to the household?

What is the "return-oninvestment"?

https://faculty.eng.ufl.edu/timothytownsend/research/florida-solid-waste-issues/floridasolid-waste-management/

UF	Dr. Timothy G. Townsend Sustainable Materials Management Research Laboratory		f y 🖸 in 🗿 😶 🤤		
	RESEARCH COURSES PUBLIC	ATIONS TEAM CONTACT MY	<i>і</i> дерт		
	Home • <u>Research</u> • <u>Florid</u>	da Solid Waste Issues • Florida Solid Waste	e Management		
	FLORIDA	SOLID WAS	TE		
	MANAG	EMENT			
	SUSTAINABLE	Florida Solid Waste	Progress Reports		
	LANDFILL PRACTICES	Management: State of th	1e Progress Report 1: HC16PR01		
	CONSTRUCTION AND DEMOLITION DEBRIS	State	Progress Report 2: HC16PR02		
	BENEFICIAL USE OF WASTE MATERIALS	As new methods for the management o solid wastes are developed and refined,	of Progress Report 3: <u>HC16PR03</u>		

https://faculty.eng.ufl.edu/timothy-townsend/research/florida-solidwaste-issues/looking-beyond-floridas-75-recycling-goal/

Home • Research • Florida Solid Waste Issues • Looking Beyond Florida's 75% Recycling Goal

LOOKING BEYOND FLORIDA'S 75% RECYCLING GOAL

SUSTAINABLE LANDFILL PRACTICES

CONSTRUCTION AND DEMOLITION DEBRIS

BENEFICIAL USE OF WASTE MATERIALS Looking Beyond Florida's 75% Recycling Goal: Development of a Methodology and Tool for Assessing Sustainable Progress Report 1: HC18PR01 Progress Report 2: HC18PR02

Progress Report 3: HC18PR03

https://faculty.eng.ufl.edu/timothy-townsend/research/floridasolid-waste-issues/tool-to-track-progress-toward-smm-goals/

CONSTRUCTION AND **DEMOLITION DEBRIS**

BENEFICIAL USE OF WASTE MATERIALS

Local Government to **Track Materials** Management and **Progress toward**

Progress Report 1: HC19PR01

Progress Report 2: HC19PR02

TAG Meeting

Thank You for Your Time!

Timothy G. Townsend, PhD, PE, Professor

352-392-0846

ttown@ufl.edu

https://faculty.eng.ufl.edu/timothy-townsend/

Malak Anshassi 813-385-6392 manshassi@ufl.edu

