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A permanent magnet (table magnet) is attached to a rotating table. The workpiece is secured to a
holder above the rotating table, and iron particles are placed on the workpiece. An additional
permanent magnet (referred to as the tool magnet) is put on the iron particles. The iron particles
align with the magnetic field lines generated between the table magnet and tool magnet creating a
freeform brush. Abrasives are then introduced into the finishing zone between the iron brush and the
workpiece surface. As the table magnet rotates about a central axis, the tool magnet and iron
particles are pulled across the surface of the workpiece, providing the motion required for finishing.

Abstract
Transparent yttrium-aluminum-garnet (YAG) ceramics have garnered an increased level of interest for

high-power laser applications due to their ability to be manufactured in large sizes and doped in
substantial concentrations. However, surface characteristics have a direct effect on the lasing ability of
these materials, and a lack of a fundamental understanding of the polishing mechanisms of these
ceramics remains a challenge to their utilization. The aim of this research is to clarify the polishing
characteristics of YAG ceramics using magnetic field-assisted finishing (MAF). Through polishing with fine
diamond abrasive, YAG ceramics can be reduced to sub-nanometer roughness despite inconsistent initial
surface conditions. Uneven material removal between grains and increased material removal at grain
boundaries becomes substantial when polishing with colloidal silica or when using iron particles below
the average grain size. Reducing the sizes of both abrasive and iron particles can continue to improve the
surface, however, it can potentially deteriorate localized defects if the iron particles can apply pressure
onto the abrasive within the defects.
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Diamond abrasive diameter: 0-2 m
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Motivation
Due to their small footprint, enhanced mobility and excellent laser quality, solid state lasers have

become the laser of choice for many industries including medical, manufacturing, defense, and
communications.
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Processing Principle

Results
As the diamond abrasive size was stepped down, the roughness decreased and the standard

deviation stayed relatively small, showing the uniformity of the surface. After polishing for 60 min with
the 0-0.25 m diameter diamond abrasive the surface roughness reached sub-nanometer levels.
However, it was found that once the diamond abrasive size dropped to 0-0.1 m, the roughness
increased substantially for Surface 2 and did not continue to decrease. The standard deviation of the
measured data points also increased substantially, suggesting that the effect was not uniform across the
surface.

Conclusions

• MAF smooths transparent YAG ceramics to sub-nanometer levels despite large variability in initial
surface conditions.

• Finishing sub-nanometer surfaces with extremely fine diamond abrasive causes average roughness to
rise as a result of varying defect modification across surface.

• Finishing sub-nanometer surfaces with colloidal silica causes a widening of defects uneven material
removal between grains

• Polishing with iron particles below the ceramic grain size caused uneven material removal between
grains and increased removal at grain boundaries

Solid state lasers have traditionally used
single crystal gain media. However,
polycrystalline ceramics have garnered an
increased level of interest for high-power laser
applications. To realize their full potential,
polycrystalline ceramics have a variety of light-
scattering sources that must be overcome.
Internal scattering sources have been
diminished substantially with modern
fabrication techniques; however, surface
roughness can still have great effects on lasing
ability.

The grain size of this polycrystalline ceramic was found to be between 15 and 30 m. The grain
structure of the ceramic influenced the material removal as the iron particle size dropped below the
material’s grain size. When the size of the iron particle is smaller than the grain size, the iron particle
presses abrasives into individual grains. The small iron particles can penetrate into the resulting cavities
and material removal is increased at these sites. This results in uneven material removal between grains,
and increased removal at the grain boundaries, causing the grain structure of the YAG ceramic workpiece
to become increasingly apparent with additional polishing time. This held true for polishing with
diamond abrasive and colloidal silica.
.
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