

X-ray Tomography Applications for Electronics

Navid Asadi

Physical Inspection and AttacKs on ElectronicS (PHIKS)

Printed Circuit Boards (PCB)

• PCBs and their applications:

✓ Aerospace, Automotive , Medical,
 Telecommunication, Military, etc.

- PCB Composition
 - Conductive layers are laminated with non-conductive layers
 - ✓ PCB's surface is coated with solder mask
 - To identify the components, logos, test points, and parts of the PCB, silkscreen markings are often used

PCBs Reverse Engineering (RE)

- Primary purpose of PCB RE
 - ✓ Identify all components on the boar and the connections between them
- Goal
 - ✓ Removing exterior coatings
 - ✓ Accessing individual PCB layers

PCB RE Process

Destructive Methods

- 1. Solder mask removal
 - Goal is to remove the solder mask from the PCB
 - Expose the copper traces
- 2. Delayering
 - Access the inner copper layers of a multi-layer PCB by physical destructive methods.
- 3. Imaging
 - Digital imaging: save connection information of each layer before its removal

Non-destructive Method

- 1. Computerized Tomography (CT)
- X-ray imaging method: series of 2D X-ray images are post-processed to create cross-sectional slices of the target object All Rights Reserved

Solder Mask Removal

Using Sandpaper

Chemical

Laser

Using Fiberglass Scratch Brush

Abrasive Blasting

Joe Grand, USENIX Association, 2014.

Delayering

Mechanical based delayering is a time consuming and labor intensive process for material removal

UNIVERSITY of **FLORIDA**

Sandpaper

Dremel Tool

CNC (computer numerical control) Milling

Joe Grand, USENIX Association, 2014.

Automated Non-destructive Imaging Using X-ray Tomography

Automated PCB RE Process

F Research

X-ray Tomography of a Custom Board

Right Instrument for Our Purpose

Acquisition Stage

Research

PCB Tomography

- X-ray tomography parameters have been optimized after several rounds of tests to better capture the intermediate layers structure
- Four layer PCB Including two intermediate layers:
 - Power layer
 - Ground layer
 - Two side layers

PCB mounted in sample holder

Intermediate Layer's layout

Power Intermediate layer

Ground Intermediate layer

Optimized Tomography Parameters

- Multiple scans are taken to cover the complete board.
- 20% overlap is needed to provide correlation information for stitching in the reconstruction step
- One time set up is required to run all the scans.

Tomography parameters	Custom board	Spartan 3
Pixel size (µm)	49.2	47.9
Nindow size (mm)	49.5	48.5
Detector	0.4X	0.4X
Source distance (mm)	204.2	200.0
Detector distance (mm)	80.1	86.0
PCB aspect ratio	10-0.3	14-1.5
Exposure time (s)	1.2-7.2	1.5-9
Number of projections	1601	1601
Number of scanned areas	6	12
Tota <u>l tomography time (hr)</u>	9 (6*1.5)	18 (12*1.5)
Overlapped	l areas Spartan 3	

Costume board

Layer #1

Imaged Area

All Rights Reserved

4

Connected and not connected via holes captured with X-ray

Layer #3, Ground Layer

Layer #4, Bottom

RE of a Commercial PCB

Xilinx Spartan 3

6 layers PCB 2 layers for ground and power

Front view ----

- Back view

Spartan 3 Layers 1-3

Layer 1 Layer 2 66 Layer 3 0

All Rights Reserved

o

Spartan 3 Layers 4-6

Layer 4

Layer 5

Layer 6

Generating CAD Files

- 1. <u>Smooth</u> images to minimize noise
- 2. <u>Assigning material</u> to each pixel based on pixel contrast for segmentation

Stitching:

 Using the features in the overlapped region to <u>correlate</u> two images and <u>merge</u>.

Complete Layer Segmented

Research

Segmented Layers 1-6

UNIVERSITY of **FLORIDA**

Virtual Bond Pull and Ball Shear Analysis

Bond Wire Quality and Assurance

- 95% of integrated circuits use wire bonding (gold, aluminum, etc.)
- Higher grade microelectronics require better standards for harsh environment
- Quality and assurance requires monitoring breaking force

Chip Package Decapsulation

- Manual grinding and polishing
- Chemical decapsulation
- Abrasive blasting
- Plasma Etching
- Laser decapsulation

Methods above require expert skill, and cost a lot of time and money

VarioEdit Laser Assisted Chemical Etching tool

- Price : \$750K
- Can performs local decapsulation using laser

Destructive Bond Wire Pull Test

All Rights Reserved

UNIVERSITY of **FLORIDA**

Online Force Measurement

- 1. Piezoresistive microsensor integrated next to the bonding pad
- The Au wire breaks at the heat-affected zone (HAZ) next to the ball bond
- Microsensor signal is highly sensitive to ball and pad geometry, values of the piezoresistive coefficients, and the z-location of the microsensor under the bonding pad
- 2. Proximity sensor attached to the wire clamp of the bonding machine
- A displacement sensor works on the eddy current principle to sense proximity of conductive materials

Actual Mechanical Testing

Failure modes:

- 1, 5 Bond lift off from pad metallization (lift off)
- 2, 4 Wire break at bond (heelcrack or neck break when ball/wedge bonding)
- 3 wire break

Disadvantages

- 1. Package should be entirely or at least partially removed
- 2. Each wire can be used for only one test
- 3. Durability and Fatigue Analyses require long testing times
- 4. The effect of mechanical load is exerted on one wire at a time

FE Simulation Challenges

- Not necessarily representative of the real geometry and structure of wires
- Modelling efforts have utilized 2D SEM images

3D Information Advantage

Tomography parameters for microchips

	TL 145406N	AD7512DIJN
Magnification	35.94	37.98
Voxel size (µm)	5.56	5.26
Focus-Object-Distance (mm)	22.39	21.2
Focus-Detector-Distance (mm)	805.22	805.22
Number of projections	1200	1200
Source voltage (kV)	200	200
Source current (µA)	25	25

Image Filtering and Segmentation

3D CAD data after segmentation

Visualized 3D Data

Filtering

- Remove beam hardening effect
- Smoothing and denoising images
 Segmentation
- Assign material to each pixel based on their contrast.

Quantitative analysis

FE Model Information

There are three different types of bond wire failures:

- 1. Wire break at bond heelcrack or neck break on ball bond or stitch side.
- 2. Wire break that occurs on any place other than the previous two cases.
- 3. Bond lift off from pad metallization on ball bond or stitch side. (X-ray resolution is not enough to resolve the details for this item.)
- The first two can be easily detected using the proposed method
- Autodesk Simulation Mechanical 2017 • software is used for quantitative analysis

Kesearc

Chip type	TL 145406N		AD7512DIJN	
	Wire 1	Wire 2	Wire 1	Wire 2
Mesh size (µm)	6.1	6.8	16.1	18.09
Total elements	40468	34195	10225	5154
Total nodes	9855	8526	3047	1664
Loop-part (µm)	30	29	72	46
Loop-height (µm)	179	183	254	257
Diameter (µm)	26.4	23.7	31.2	30.3

FE Analysis

- Initial and boundary conditions are applied to bond wires
- Both ball bond and stitch side are fixed
- 1 cN Load is applied to the bond wire
- Stress and strain in wires are investigated after applying the force

Maximum values for stress and strain are still in an acceptable range

Extension to Ball Shear Testing

Ball bond shear on bond wire

Ball bond shear on ball grid array

4 Cratering

3 Pad metal lift

2 Ball lift

Disadvantages

- 1. Package should be entirely or at least partially removed
- 2. Each ball bond can be used for only one test
- 3. Durability and Fatigue Analyses require long testing times
- 4. The effect of mechanical load is exerted on one bond ball at a time

X-ray Tomography Reliability

Experimental Setup

- **Selected Integrated Circuits are:**
 - Flash Memory 1.
 - Intel 28F400B5 (400nm Technology) a)
 - Macronix MX29F400C (150nm Technology) b)

2. **FPGAs**

- Xilinx Spartan 3 (90nm Technology) a)
- Xilinx Spartan 6 (45nm Technology) b)
- Total flash memory :

Total FPGAs: 4.

Research

12 (3 sets with 4 ICs in each set)

Electrical Tests of Flash Memory

Results of Flash Memory

Change in erase time for Set-1 Intel flash memories.

Change in erase time for Set-2 Intel flash memories.

- No bit flip and no change in read margin.
- Read operation is not affected.
- Erase time increased exponentially.
- Failure of erase operation occurred.

Results of Flash Memory

Change in the erase time for Macronix flash memories.

- Negligible change in Erase time.
- No Failure of erase operation.

Discussion of Flash Memory Result

Trapped charges in tunnel oxide of Floating Gate Transistor (FG)

Sources of degradation

Oxide and interface trapped charges.

Electrical Tests of FPGAs

- Tomography was performed at unbiased FPGAs.
- Test focused on the change in the speed of FPGAs.
- Ring Oscillators (ROs) were placed into FPGAs to measure delay of Configurable Logic Blocks (CLB).

$$\Delta f_{i,t_n} = 100 \times (\frac{f_{i,t_n} - f_{i,t_o}}{f_{i,t_o}})$$

 f_{i,t_o} initial frequency of *i*th RO f_{i,t_n} frequency of the *i*th RO after the *n*th tomography cycle.

Results of FPGAs

- Average RO frequency increases with time for both Spartan 3 FPGAs.
- Negligible change until first 4 hours of time in Spartan 6.

Reading

- USENIX paper: Printed Circuit Board Deconstruction Techniques
- IEEE TCPMT paper: PCB Reverse Engineering Using Nondestructive Xray Tomography and Advanced Image Processing
- ISTFA paper: Non-destructive Bond Pull and Ball Shear Failure Analysis Based on Real Structural Properties
- ISTFA paper: Analyzing the impact of X-ray tomography for nondestructive counterfeit detection

