# Image Processing and Computer Vision for Hardware Assurance

Olivia Paradis Dr. Asadizanjani





#### • Image Processing (IP):

The processing of images using mathematical operations by using any form of signal processing for which the input is an image, a series of images or a video, such as a photograph or video frame; the output of image processing may be either an image or a set of characteristics or parameters related to the image. [1]

Basically: image in, image out

#### • Computer Vision (CV):

An interdisciplinary field that deals with how computers can be made for gaining high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do. [1]

**Basically: image in, <u>knowledge</u> out** 



| Stage Name      | Machine Learning                                                                                                                                    | Computer Vision                                                                                                                                  | Image Processing                                                                                                            | SME Verification                                                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Used For        | Sample Classification                                                                                                                               | Feature Extraction                                                                                                                               | Preprocessing                                                                                                               | Multipurpose                                                                                                                                                         |
| Characteristics | <ul> <li>Can be fully automated</li> <li>SME only needed for<br/>periodic random<br/>sampling</li> <li>Widest range of<br/>applicability</li> </ul> | <ul> <li>Start of automated<br/>assurance</li> <li>Output no longer<br/>resembles an image</li> <li>Only minor SME input<br/>required</li> </ul> | <ul> <li>Clean noise in input image</li> <li>Enhance appearance of<br/>defects</li> <li>Still requires SME input</li> </ul> | <ul> <li>Burden of assurance is<br/>completely on the<br/>human</li> <li>Only useful for low-<br/>throughput supply chains</li> <li>Highly prone to error</li> </ul> |

UF

Research **FLORIDA** 

F



#### IC/PCB Verification Enhancement

- Preprocessing
- Difference Imaging
- Thresholding
- Fault Detection
- SME Verification





Deblurring, Color Enhancement Color Thresholding, Binary Morphological Image Processing





Spot the difference!





#### SME Notes

- 1. Breakout
- 2. Pin Hole
- 3. Open Circuit
- 4. Underetch
- 5. Mousebite
- 6. Missing Conductor
- 7. Spur
- 8. Short
- 9. Wrong Size Hole
- 10. Conductors too close
- 11. Spurious copper
- 12. Excessive Short
- 13. Missing Hole
- 14. Overetch



- Bill of (BoM)
  - **Definition**: list of all components present on a PCB, such as resistors, capacitors, and Integrated Circuits (ICs) [4]
  - Applications [5]:
    - Hardware Assurance (e.g. detection of hardware Trojans, tampering, or other malicious modifications)
    - reverse engineering (e.g. analysis of foreign, competitor, or legacy devices)
    - industrial assessment (e.g. cost estimation, quality assurance)
    - academia (e.g. technology trend analysis)
- Goal: Automatic BoM Extraction (AutoBoM)



#### Component Detection

• Localize the components

#### Component Classification

• Determine what type each component is

#### Component Identification

• Determine enough info about each component to roughly purchase the exact materials



#### **AutoBoM: Component Detection**





#### **AutoBoM: Component Detection**





> 99% accuracy

#### **AutoBoM: Component Detection Challenges**



• Imaging Conditions: camera type, lighting intensity, lighting color



### **AutoBoM: Component Detection Challenges**



Inherent Board Variations



### **AutoBoM: Component Detection Challenges**



Inherent Component Variations









## **Imaging Conditions Solution: Color Checkers [6]**



| Color Check | er Chart   | ,<br>        | ۱<br>     |              |               |
|-------------|------------|--------------|-----------|--------------|---------------|
| Dark Skin   | Light Skin | Blue Sky     | Foliage   | Blue Flower  | Bluish Green  |
| R=115       | R=194      | R= 98        | R= 87     | R=133        | R=103         |
| G= 82       | G=150      | G=122        | G=108     | G=128        | G=189         |
| B= 68       | B=130      | B=157        | B= 67     | B=177        | B=170         |
| Orange      | Purple Red | Moderate Red | Purple    | Yellow Green | Orange Yellow |
| R=214       | R= 80      | R=193        | R= 94     | R=157        | R=224         |
| G=126       | G= 91      | G= 90        | G= 60     | G=188        | G=163         |
| B= 44       | B=166      | B= 99        | B=108     | B= 64        | B= 46         |
| Blue        | Green      | Red          | Yellow    | Magenta      | Cyan          |
| R= 56       | R= 70      | R=175        | R=231     | R=187        | R= 8          |
| G= 61       | G=148      | G= 54        | G=199     | G= 86        | G=133         |
| B=150       | B= 73      | B= 60        | B= 31     | B=149        | B=161         |
| White       | Neutral 8  | Neutral 65   | Neutral 5 | Neutral 35   | Black         |
| R=243       | R=200      | R=160        | R=122     | R= 85        | R= 52         |
| G=243       | G=200      | G=160        | G=122     | G= 85        | G= 52         |
| B=242       | B=200      | B=160        | B=121     | B= 85        | B= 52         |

## **Imaging Conditions Solution: Color Checkers**





| www.ragi-lot-loc.com |              |                |             | GretagMacbeth ColorChecke      |                |  |
|----------------------|--------------|----------------|-------------|--------------------------------|----------------|--|
| 38.12.14             | 10003175     | 51 0 -22       | 45 -17 22   | 56 13 -25                      | 72 - 31 1      |  |
| el Dark Skin         | ALLONG       | 01 Thin Sky    | A Polige    | ef Blac Herne                  | 66 Blaink Crow |  |
|                      | 41 18 -49    | 52 40 15       | 31 26 -23   | 72-38 59                       | 72 12 67       |  |
| et Oringe            | el boyint Ba | Ro Maderan Red | 10 Perpte   | 11 Sellow Groot                | O Crange Solle |  |
| 38 27 -51            | 55-41.34     | 41 51 26       | 81-479      | 52-47-44                       | 52-22-27       |  |
| 1) Bee               | I Gres       | 15 Red         | 14 Yollow   | C IT Mapula                    | II Com         |  |
| \$600                | 81.9.0       | 170.0          | 52 0 0      | 2694                           | 2000           |  |
| 19.9339              | 20 Neutral 8 | 21 Neutral 6.5 | 20 Netrol S | 25 Noted 3.5                   | 24 Block       |  |
| CIE Lab              |              |                | Free        | From xyY values @ illuminent C |                |  |











## **Imaging Conditions Solution: Color Checkers**











#### After Normalization





**Much Better!** 



- LOTS of tuning required:
  - Color threshold
  - Enhancement parameters
  - Morphological image processing filter sizes
  - Etc. etc. etc.
- IP/CV, alone is not sufficient to handle inherent board or component variations. What is?



- Machine Learning (ML):
  - Analogy: child that's really really good at math  $\rightarrow$  good at seeing patterns
  - BUT, child trusts everything you tell them  $\rightarrow$  information (data) you give it must be VERY helpful
- Challenge: Memorization, but cannot extrapolate (overtraining)
  - Solution 1: MORE DATA (expensive)
    - Give the ML algorithm more examples and it learns...
  - Solution 2: Incorporate domain knowledge
    - Help the ML algorithm determine what to study

## Machine Learning: Domain Knowledge



- PCB Design Best Practices
- CAD Design Rule Checks
- Institute of Printed Circuits (IPC) Standards
  - Participating Companies: Agilent, Apple, Boeng, Cisco, Dell, GE, Hewlett-Packard, IBM, Intel, Lenovo, Logitech, Microsoft, Motorola, Thermo Fisher, Xerox, etc. [7]



## Human-Encoded Knowledge [8]

- Example: consider just resistors and capacitors
  - Large variety...





• BUT, >90% look like this









## Human-Encoded Knowledge [8]



• What differences do you spot?





## Human-Encoded Knowledge [8]

- What differences do you spot?
  - resistors tend to be black, capacitors tend to be brown, tan, or grey ٠
  - resistors tend to be more rectangular, capacitors tend to be more rounded ٠

#### 23

# • resistors tend to have text, capacitors do not ٠





IP/CV!

 $\rightarrow$  color

 $\rightarrow$  texture

 $\rightarrow$  shape

## **IP/CV: Color**



• **Color Model** = abstract numerical model that describes and organizes colors in a quantitative manner



## IP/CV: Color - RGB [9]



- RGB: standard additive color model, based on human trichromacy
- Red
  - Long wavelength, 564–580 nm
  - Range: [0, 255]
- Green
  - Med wavelength, 534–545 nm
  - Range: [0, 255]
- Blue
  - Short wavelength, 420-440 nm
  - Range: [0, 255]



#### **IP/CV: Color - RGB**





- HSV: human-interpretable color space
- Hue
  - color dominant wavelength
  - Range in degrees: [0, 360]
- Saturation
  - how much the color spectral distribution colorfulness- is around a certain wavelength
  - Range: [0, 1]
- Value
  - the amount of gray, close to human perception
  - Range: [0, 1]





## **IP/CV: Color - HSV**







Global Shape Features

#### **Original Image**



#### Edge Detection



#### **Blob Detection**



### **IP/CV: Texture**



Original Image



#### Dissimilarity



Contrast



Energy



Correlation



Homogeneity



## Takeaways



- Image Processing (IP) vs. Computer Vision (CV)
- IP/CV role in HW Assurance
- IP/CV Applications: Verification and AutoBoM
- AutoBoM challenges:
  - imaging conditions  $\rightarrow$  color checker normalization
  - board/component variations → machine learning + domain knowledge
- How to encode domain knowledge?
  - 3 types of features: color, shape, texture



[1] R. C. Gonzalez and R. E. Woods, *Digital image processing*. New York, NY: Pearson, 2018.

[2] Shih, F.Y.: Image processing and pattern recognition: fundamentals and techniques. IEEE Press; Wiley (2010)

[3] Moganti, M., Ercal, F., Dagli, C.H., Tsunekawa, S.: Automatic pcb inspection algorithms: A survey. Computer Vision and Image Understanding63(2),287–313 (1996). DOI 10.1006/cviu.1996.0020

[4] Mcloughlin, "Secure embedded systems: The threat of reverse engineering," Parallel and Distributed Systems, International Conference on, vol. 0, pp. 729–736, 12 2008.

[5] S. E. Quadir, J. Chen, D. Forte, N. Asadi, S. Shahbazmohamadi, L. Wang, J. Chandy, and M. Tehranipoor, "A survey on chip to systemreverse engineering," J. Emerg. Technol. Comput. Syst., vol. 13, no. 1,4 2016.

[6] <u>https://www.pinterest.com/pin/379357968609448874/</u>

[7] http://www.ipc.org/

[8] <u>http://www.electronicsandyou.com/blog/electronic-components</u>

[9] "IEC 61966-2-1:1999". IEC Webstore. International Electrotechnical Commission. Retrieved 3 March 2017

[10] US patent 2375966, Valensi, Georges, "System of television in colors", published 1945-05-15