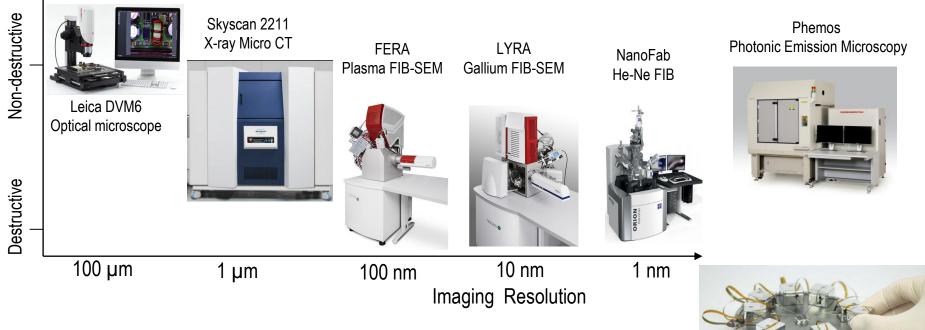
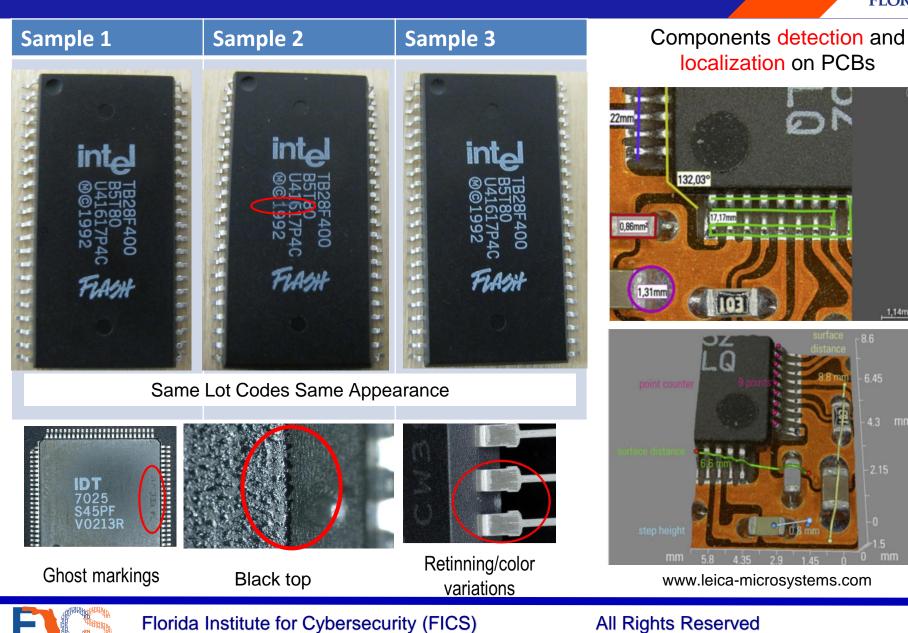


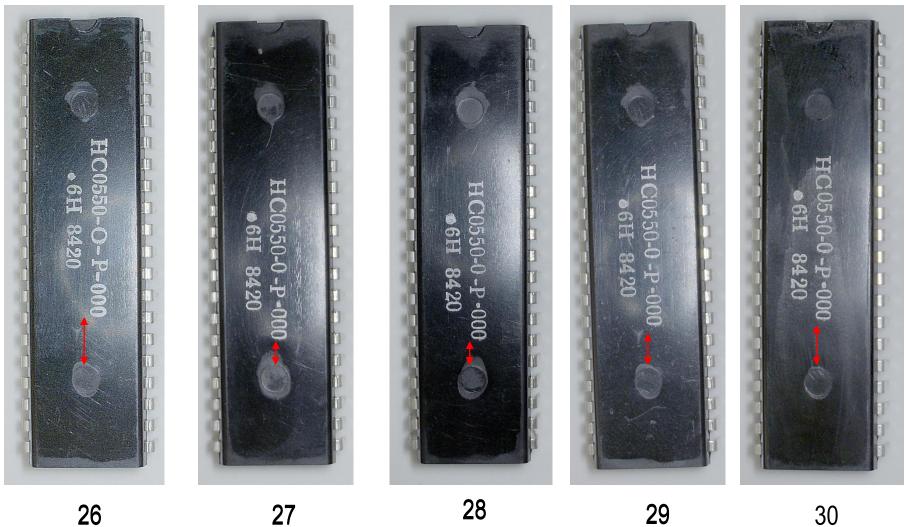
Counterfeit Electronics Optical Microscopy


Navid Asadi

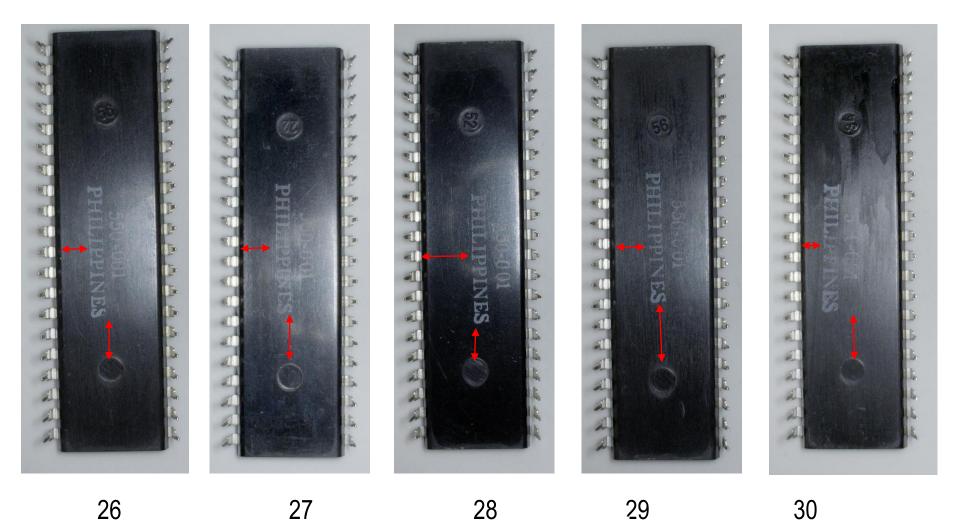
Physical Inspection and AttacKs on ElectronicS (PHIKS)

Microscopy and FA Tools


- Imaging and debugging tools are developed for fault analysis.
- Fast advancement in FIB/SEM imaging
- Advancement in photonic emission microscopy, LVS, IR analysis
- Development in micro and nano probing, EBIC, EBAC

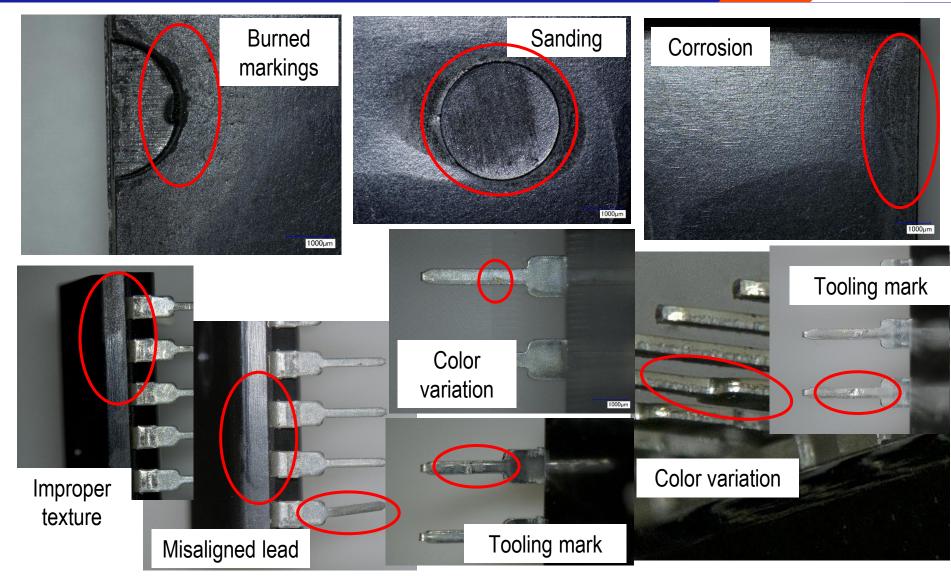

Optical Inspection

Optical Inspection


Different marking location

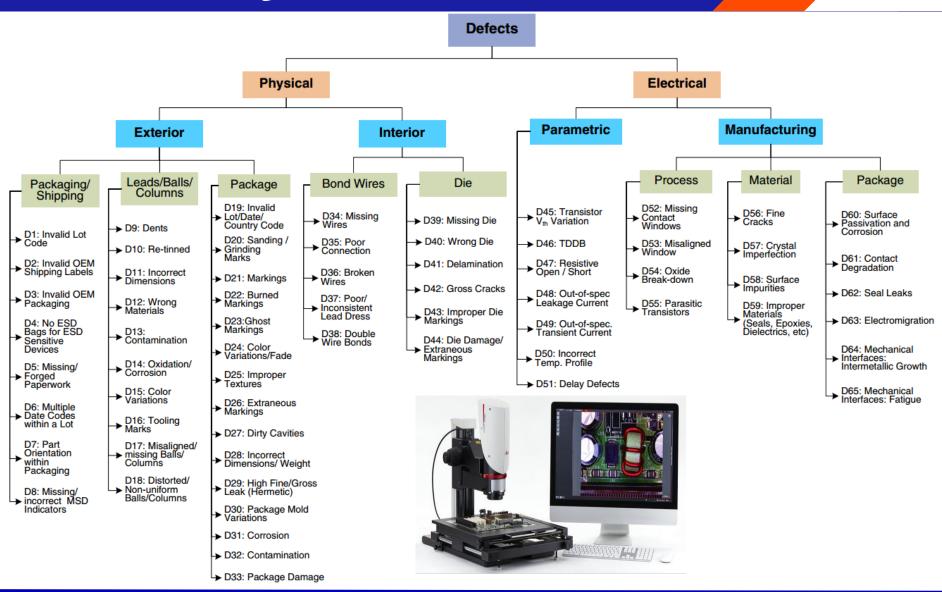
Florida Institute for Cybersecurity (FICS)

Back Surface


Different marking location

Florida Institu

Florida Institute for Cybersecurity (FICS)


Optical Inspection Part 28

Florida Institute for Cybersecurity (FICS)

Taxonomy of Defects

Florida Institute for Cybersecurity (FICS)

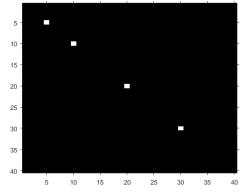
All Rights Reserved

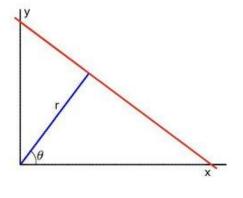
UNIVERSITY of **FLORIDA**

Florida Institute for Cybersecurity (FICS)

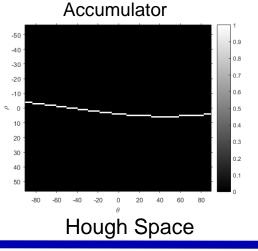
All Rights Reserved

Scratch Detection


Prior work

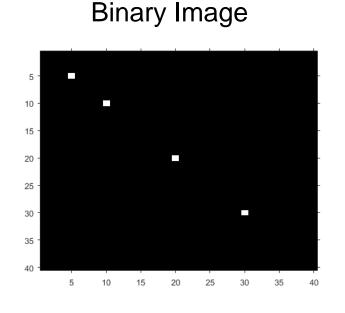

Thresholding, Edge detection, vertical/horizontal line detection, etc.

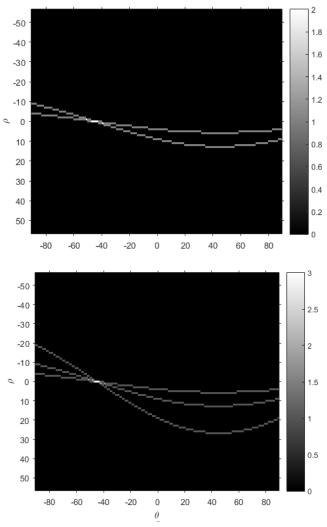
Hough Transform


- Each white pixel in a binary image "votes" for a family of lines in an accumulator matrix
- Given a set of angles $\theta = \{-89^\circ, ..., 90^\circ\}$ on some interval and a pixel (x_0, y_0) :
 - Can define the family of lines that pass through (x_0, y_0) as:
 - $r = x_0 \cos\theta + y_0 \sin\theta$
 - Each pair (r, Θ) in the accumulator matrix is incremented by 1

Image

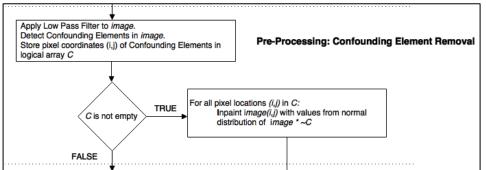
PSD813F1-90 9945GAZ

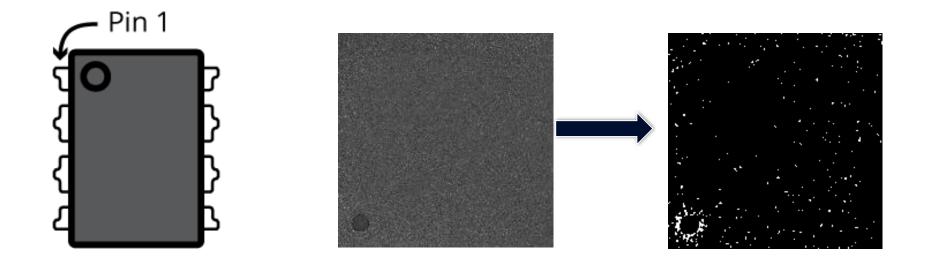




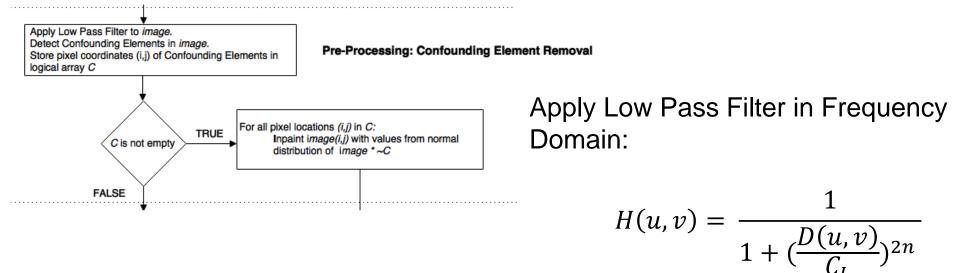
Hough Transform

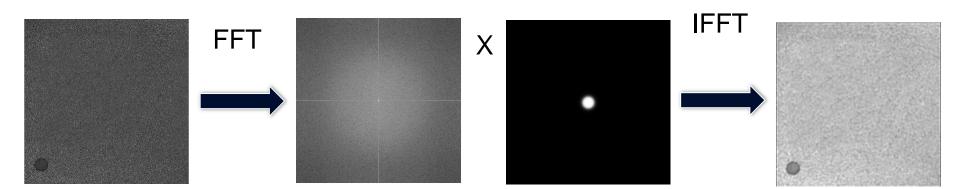
Accumulator



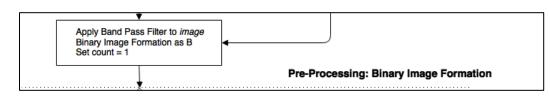

Florida Institute for Cybersecurity (FICS)

Preprocessing: Confounding Element Removal



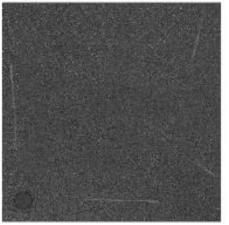

- Problem: Text, Logos, and orientation markers can create false Hough Line peaks
- Here, we assume text has already been removed

Preprocessing: Confounding Element Removal

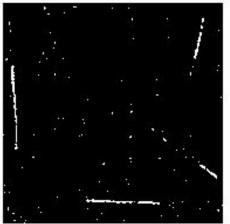


FLORIDA

Binary Image Formation



 Low Pass filter is applied to highlight scratches, blend together pixels into more uniform lines


Binary Threshold:

For all pixels (*i*,*j*) in Filtered Image : $B(i,j) = \{ \begin{array}{l} 1 & if \ F(i,j) > \mu + 3\sigma \\ 0 & Otherwise \end{array} \}$

Original Image

Resulting Binary Image

Results

Average(s)	Standard	1	2	3	4
Detected Scratches	0	4	1	6	3
False Positives	0	0	0	2	1
True Scratches	0	4	8	6	4
Accuracy	100.00	100.00	0.13	0.75	0.60

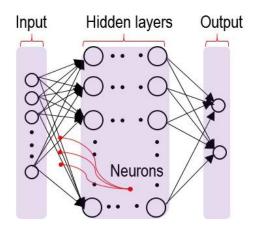
 $Accuracy = \frac{Detected \ Scratches}{True \ Scratches + False \ Positives}$

Florida Institute for Cybersecurity (FICS)

Defect Detection Automation

- 1. Image processing and filtering
 - a) Image filtering, with a modified Hough transform to detect circles
 - b) Sobel filter and canny edge detection algorithm to detect the scratches

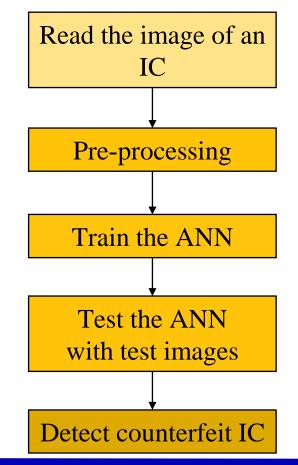
Sudden change in the gradient will represent an edge or scratch.


- 2. Machine Learning
 - a) Similar to human brain structure
 - b) Information is stored in interconnections between layers
 - c) Traditional and modern ML

Counterfeit IC with scratch defect

original image

after image processing


Artificial Neural Network

ANN Principles:

- Information is stored in the interconnections between neurons
- Each neuron in input layer is connected to all neurons in hidden layer.
- Weighted matrix decides the input for each neuron in hidden layer
- Output of a neuron is calculated based on an appropriate activation function (tanh, step function, etc.)
- During training the expected output is compared with the output obtained.

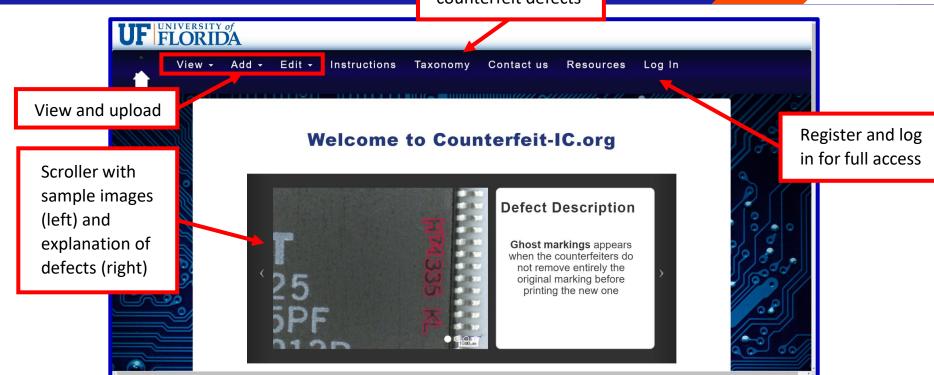
Flowchart for the counterfeit IC detection using neural network

- VIEW and EXPORT images and statistical information related to counterfeit defects
- UPLOAD images of defects found by physical inspection of counterfeit ICs
- DEVELOP automated counterfeit IC detection techniques
- LEARN more about the defects found in counterfeit ICs and counterfeit IC detection

- VIEW and EXPORT images and statistical information related to counterfeit defects
- UPLOAD images of defects found by physical inspection of counterfeit ICs
- DEVELOP automated counterfeit IC detection techniques
- LEARN more about the defects found in counterfeit ICs and counterfeit IC detection

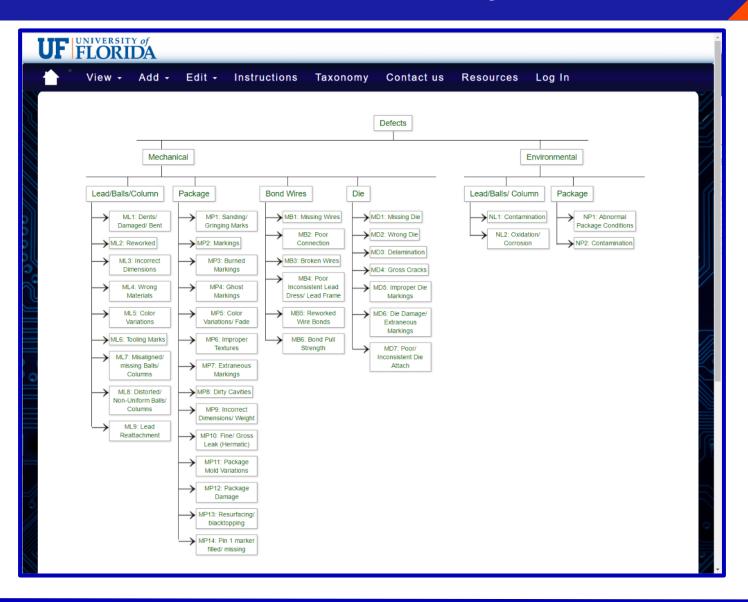
- VIEW and EXPORT images and statistical information related to counterfeit defects
- UPLOAD images of defects found by physical inspection of counterfeit ICs
- DEVELOP automated counterfeit IC detection techniques
- LEARN more about the defects found in counterfeit ICs and counterfeit IC detection

Learn more about counterfeit defects



- VIEW and EXPORT images and statistical information related to counterfeit defects
- UPLOAD images of defects found by physical inspection of counterfeit ICs
- DEVELOP automated counterfeit IC detection techniques
- LEARN more about the defects found in counterfeit ICs and counterfeit IC detection

Learn more about counterfeit defects



- VIEW and EXPORT images and statistical information related to counterfeit defects
- UPLOAD images of defects found by physical inspection of counterfeit ICs
- DEVELOP automated counterfeit IC detection techniques
 - LEARN more about the defects found in counterfeit ICs and counterfeit IC detection

Learn- Defect Taxonomy

Florida Institute for Cybersecurity (FICS)

Learn- Defect Definitions

UF FLORIDA	
UF FLORIDA	
View - Add -	Edit - Instructions Taxonomy Contact us Resources Log In
	Defects
Mecha	Environmental
Lead/Bails/Column ML1: Dents/ Damaged/ Bent ML2: Reworked	Package Bond Wires Die Lead/Balls/ Column Package MP1: Sanding/ MB1: Missing Wires MD1: Missing Die NL1: Contamination NP1: Abnormal MP1: Sanding/ MB1: Missing Wires MD1: Missing Die NL1: Contamination NP1: Abnormal NP2: Contamination NP2: Contamination NP2: Contamination
ML3 Incorrect Dimensions ML4: Wrong	MP1: Sanding/ Gringing Marks
Materials ML5: Color Variations ML6: Tooling Marks ML7: Misaligned/ missing Balts/ Columns	If the package exhibits any sanding or grinding marks externally, it has likely been remarked. Generally, counterfeiters use sand blasting processes to remove markings from the package. This process generally results in a distinct visual signature being present on the package.
ML9: Distorted/ Non-Uniform Balls/ Columns ML9: Lead Reattachment	MP8: Dirty Cavities MP9: Incorrect Dimensions/ Weight MP10: Finer Gross Leak (Hermatic)

Florida Institute for Cybersecurity (FICS)

View a Product Report

Florida Institute for Cybersecurity (FICS)

View a Defect Report

All Rights Reserved

Florida Institute for Cybersecurity (FICS)

View a Defect Report

View - Add - Edit -	Instructions	Taxonomy Conta	ct us Resources	Log In		
		F-K0522-FQA-44N30	Unknown Manufa	cturer	1	20%
Defect Pener	t for (CA91L860B-50CE	Tundra Semicond	uctor Corporation	5	100%
Defect Report		AD7512DIJ	Unknown Manufa	turer	5	100%
Defect Taxonomy	-///					
Primary Classificiation Secondary Classification Tertiary Classification						« 1 »
Product Types With Sanding/Grit	nding Marks Manufa	Defect Name	Pr	oportion of Component	s with Sanding/Grinding M	arks
XC400E-PC84CKM0221	Unknov	Package Mold Variati	ions 59	.09%		
A0400E-P0840NM0221	UNKNOW	Reworked	50	0/		
	512		50	70		
IDT7025S45PF		Tooling Marks	50	%		
i960	Intel	Markings	50	%		
i960 FB23AB (S2)	Intel Unknov	Markings Improper Textures	50 45 40	% .45% .91%		
i960 FB23AB (S2) F-K0522-FQA-44N30	Intel Unknov Unknov	Markings Improper Textures Extraneous Markings	50 45 40 5 31	% .45% .91% .82%		
i960 FB23AB (S2) F-K0522-FQA-44N30 CA91L860B-50CE	Intel Unknov Unknov Tundra	Markings Improper Textures Extraneous Markings Dents, Damages, or	50 45 40 5 31 Bent 27	% .45% .91% .82% .27%		
i960 FB23AB (S2) F-K0522-FQA-44N30	Intel Unknov Unknov	Markings Improper Textures Extraneous Markings Dents, Damages, or I Misaligned/Missing B	50 45 40 5 31 Bent 27 alls/Columns 22	% 45% 91% 82% 27% 73%		
i960 FB23AB (S2) F-K0522-FQA-44N30 CA91L860B-50CE	Intel Unknov Unknov Tundra	Markings Improper Textures Extraneous Markings Dents, Damages, or I Misaligned/Missing B Ghost Markings	50 45 40 5 31 Bent 27 alls/Columns 22 22	% .45% .91% .82% .27% .73% .73%		
i960 FB23AB (S2) F-K0522-FQA-44N30 CA91L860B-50CE	Intel Unknov Unknov Tundra	Markings Improper Textures Extraneous Markings Dents, Damages, or I Misaligned/Missing B Ghost Markings Color Variations/Fade	50 45 40 5 31 Bent 27 alls/Columns 22 22 22 22	% 45% 91% 82% 27% 73%		
i960 FB23AB (S2) F-K0522-FQA-44N30 CA91L860B-50CE	Intel Unknov Unknov Tundra	Markings Improper Textures Extraneous Markings Dents, Damages, or I Misaligned/Missing B Ghost Markings	50 45 40 5 31 Bent 27 alls/Columns 22 22 2 22 2 22 2 22 2 22 2 22 2 22 2	% .45% .91% .82% .27% .73% .73% .73%		
i960 FB23AB (S2) F-K0522-FQA-44N30 CA91L860B-50CE	Intel Unknov Unknov Tundra Unknov	Markings Improper Textures Extraneous Markings Dents, Damages, or I Misaligned/Missing B Ghost Markings Color Variations/Fade Fine/Gross Leak (He	50 45 40 31 Bent 27 alls/Columns 22 22 23 22 24 22 22 25 22 22 22 22 22 23 22 22 23 22 22 23 22 22	% .45% .91% .82% .27% .73% .73% .73% .73%		

View a Sample Report

Contract of the second	View - Add - Edit - In:	structions	Taxonomy	Contact us F	Resources Log In
	Component #78:				
	Product Type:			i960	
	Product Specification:			Not available	
	Product Image:			Not available	
ani.	Sample Group:			Initial	
5 5	ID Within Sample:			1	
	Defect Name	Image	Primary Class	Secondary Class	Tertiary Class
	Reworked	View	Mechanical	Lead/Balls/Column	s N/A
	Tooling Marks	View	Mechanical	Lead/Balls/Column:	s N/A
	Misaligned/Missing Balls/Columns	View	Mechanical	Lead/Balls/Column	s N/A
	Package Mold Variations	View	Mechanical	Package	N/A
· · · / ,			Mechanical	Package	N/A

Florida Institute for Cybersecurity (FICS)

View a Sample Defect Image

Uploading a New Sample Group

To upload using an Excel File, first download the form below. Each row of the form represents one defect of one component of the sample. For each row:

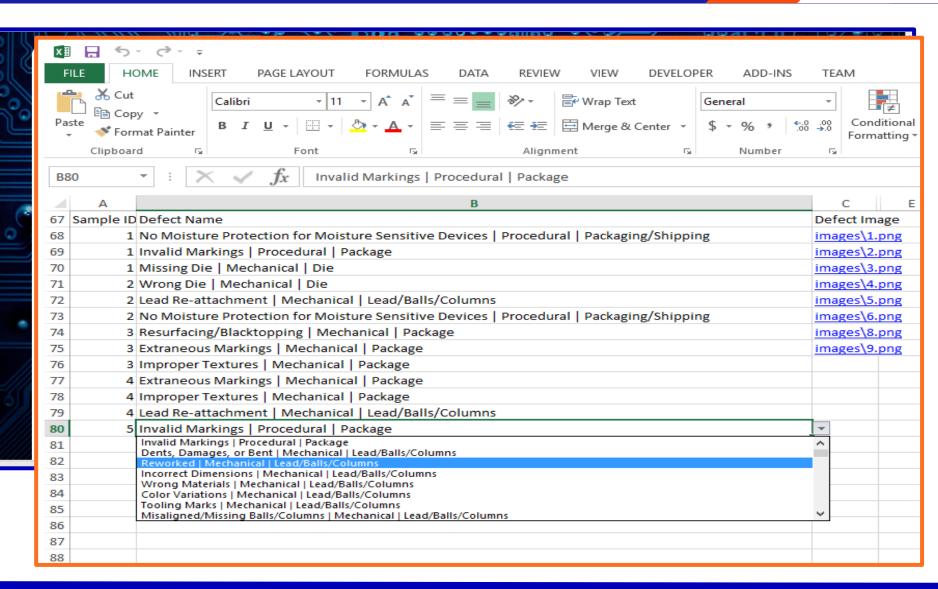
- 1. Enter the sample ID number of the component
- 2. Select the desired defect
- 3. If applicable, create a hyperlink to the corresponding image of the defect.

Do not skip rows when entering data. When finished, create a zip archive containing the images, and the Excel file, taking care to preserve the file system structure between the images and the Excel file. Maximum file Upload is 100MB.

See example here

Download Excel Form

Upload the Zip Archive Below:


Click Here or Drag Files to Upload

Submit Zip file

Ć

Uploading a New Sample Group

F

Florida Institute for Cybersecurity (FICS)

All Rights Reserved

FLORIDA

Readings

- IDEA-STD-1010-B
- Counterfeit-ic.org
- Book chapter: Counterfeit Integrated Circuits: Detection, Avoidance, and the Challenges Ahead
- ISTFA paper: A Database for Counterfeit Electronics and Automatic Defect Detection Based on Image processing and Machine Learning

