Applications of optical analysis in Reverse-Engineering

Presented by: Mir Tanjidur Rahman Dr. Navid Asadi

Physical Inspection and AttacKs on ElectronicS (PHIKS)

PHOTON IS OUR BUSINESS

Evaluating the security of Field Programmable Gate Arrays (FPGAs) as case studies

Field Programmable Gate Array (FPGA)

Security of FPGAs

- **Bitstream:** configuration data containing Intellectual Property (IP) and secrets for reconfigurable hardware
- The bitstream can be loaded in the field (adversarial environment)
- Threats: cloning, reverse-engineering, tampering or spoofing

Case Study: Attacking Bitstream Encryption of FPGAs

All Rights Reserved

5

Photon Emission Analysis

Mechanism of Photon Emission

- As carriers are accelerated by electric fields they gain kinetic energy, which is then released via generating photons.
- In CMOS transistors this hot-carrier lacksquareluminescence takes place at the drain edge where the source-drain electric field is most intense and predominantly in n-type transistors as electrons are more easily accelerated than holes.
- In the case of CMOS-inverter, the vast majority of photons are generated when the input switches from 0 to 1 >> data dependent
- The photon generation rate is governed primarily by the supply voltage and the switching frequency of the transistor under observation.

Backside Access

upside down on a custom PCB

Altera MAX V CPLD (180 nm)

Older package technologies like QFPs should be decapsulated and soldered

Altera Cyclone IV FPGA (60 nm)

- A Combinatorial Logic: AND, OR, NOT, XOR, etc.
- Sequential Logic: Counter, Shift Register, State Machines, etc.
- Presence of Clock buffers in **Sequential Logic**

Altera MAX V (180 nm)

All Rights Reserved

9

Example (1): Emission of a Ring-Oscillator

- Identical Switching Frequency by all LEs
- Switching frequency independent and generally higher than clock frequency
- Applications: TRNG and **Internal Clocks**

Altera MAX V (180 nm)

Example (2): Emission of a Binary Counter

- n-bit counter = n clocked registers
 + some combinatorial logic
- Identical switching frequency of the clock for all registers
- Applications: Delay and Timing circuits such as asynchronous protocols

Altera MAX V (180 nm)

Impact of Technology size on Photon Emission

- Lower supply voltage for smaller technologies >> less photon emission rate
- Smaller technology >> harder to resolve a transistor
- Large space between transistors in LUTs >> resolving of transistors still possible for the attacker

60nm

Core Localization in NVIDIA AI CHIP

Core Localization in NVIDIA AI CHIP

Core Localization in NVIDIA AI CHIP

Optical Contactless Probing

Optical Contactless Probing

- by electrical field and current.
- altered by voltage/current —> probing of electrical signals on the node
- detecting node switching with this frequency

• Changes in the absorption coefficient and the refractive index of device in active area

• Electro-Optical Probing (EOP) or Laser Voltage Probing (LVP): Optical beam intensity

• Electro-Optical Frequency Mapping (EOFM) or Laser Voltage Imaging (LVI): Feeding the reflected signal to a detector with a narrow band frequency filter while scanning the laser—>

Plaintext Extraction

Research

Tajik, S., Lohrke, H., Seifert, J. P., & Boit, C. "On the Power of Optical Contactless Probing: Attacking Bitstream Encryption of FPGAs," In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

Experimental Setup

- Device under Test (DUT): Skoll Xilinx Kintex 7 development board
 - Chip's technology: 28 nm ullet
 - No chip preparation (e.g., depackaging, silicon ulletpolishing, etc.)
- Optical Setup: Hamamatsu PHEMOS-1000
 - Laser wavelength: 1.3 μ m ullet
 - Laser spot size: >1 μ m \bullet

Localizing Decryption Core using EOFM

AES Core

Oldokaatitiitityforeeoryptedobiststeem

All Rights Reserved

Main Core

Frequency Analysis of Regular Bitstream

Locating the plaintext data

Locations in AES output port

Research

Locating the plaintext data

Locations in AES output port

Research

Extracting Plaintext Data using EOP

CCLK [V] EOP Plaintext Bit 0 [a.u.] EOP Plaintext Bit 2 [a.u.]

Logic Locking: Active IP Protection Mechanism

Goal

- Locking functionality of IP by inserting additional logic
- key programmed in trusted facility after fabrication

Classification

- Combinational Logic Locking: Locking design w ith logic gates
- Finite State Machine (FSM) Locking: Locking w ith state transition graph modification

Finite State Machine Locking

Core-Components of Logic Locking

Components mandatory for functionality of a logic locked chip

Time-line for Logic Locking so Far

- Adversary \rightarrow Only untrusted foundry?
- Vulnerable only to algorithm approach?
- What about other capabilities of adversary? \rightarrow Failure analysis tools

Threat Model & Potential Adversary

> Threat model is approach exploited by an adversary to access the protected assets, i.e, locking key

Adversary	Asset Holding
SoC Integrator	1.Soft/Hard IP 2.GDS II file
3 rd Design Service Provider	1.IP Design 2.GDS II file
Foundry	1. GDS II file
Assembly and Distributor	1. Unlocked chip
End User	1.Unlocked chip 2.Documentation of chip

Partial reverse engineering and suitable failure analysis tool is sufficient for attack

Case Study –II: Flip-flop Probing

Avalanche FPGA development board > 28 nm technology Microsemi MPF300 Polarfire chip

Microsemi die image collected with 1300nm laser

Reverse Engineering DUT

Probing Registers in DUT

- Activity shows for two different frequency
- > White dot corresponds to registers

Proof-of-Concept Implementation

- > K1, k2 \rightarrow key-input (key-register) \rightarrow constant v alue stored
- > a, b, c \rightarrow user input (general purpose register) \rightarrow variable stored value

Exposing Key-register and Key Value

Register and clock activity when input connected to ground

Register and clock activity when input connected to active

Exposing Key-register and Key Value

Simple image registration, subtraction, or image co-relation can automate the whole process

- The real limiting factor for an attacker is not the technology size, but the distance of a probing location of interest to the next location, (Optical Resolution and spot size)
- the separation between locations carrying different streams of data can actually be much larger than the technology size.

Laser Stimulation

Thermal Laser Stimulation (OBIRCH)

- The chip is scanned with a 1.3 μ m \bullet laser beam from the backside
- The current changes in response to the local thermal stimulations
- Measured current is monitored by \bullet a current amplifier >> a proportional analog voltage is generated
- Analog voltage is fed into image acquisition hardware while scanning the laser

SRAM readout using TLS (1)

- Thermal stimulation leads to \bullet thermal gradient at the source/drain of the transistors
- Different materials lead to Seebeck \bullet voltage generation

SRAM readout using TLS (2)

The Seebeck voltage changes current flow \odot through the "off" transistors >> leakage current increases

• Reaction of different areas of SRAM cells to TLS, depending on the stored value

Research

Lohrke, H., Tajik, S., Boit, C., & Seifert, J. P. "Key Extraction Using Thermal Laser Stimulation: A Case Study on Xilinx Ultrascale **FPGAs**," accepted for CHES 2018 F

Experimental Setup

- **Device under Test (DUT):** Avnet Kintex UltraScale **Development Board**
- Chip's technology: 20 nm
- No chip preparation (e.g., depackaging, silicon polishing, etc.) required
- **Optical Setup:** Hamamatsu PHEMOS-1000
- Laser wavelengths: 1.1 and 1.3 μ m
- Laser spot size: approximately 1 μ m

Localizing the Configuration Logic

Xilinx Kintex UltraScale in flip chip iguration I Logic Image acquisition with a laser package scanning microscope

Localizing BBRAM using Laser Stimulation

Laser Stimulation of

In all experiments!

Localizing the key bits in BBRAM by TLS

Set 255 bits to "0" and one bit to "1". Shifting the bit "1" eight times by one bit

All Rights Reserved

1 bit

Localizing the key bits in BBRAM

Set all 256 bits to "1" and reset all bits to "0" again.

Countermeasures against Optical Attacks

Circuit Based Solution: Dummy Gate

In physical layout, dummy gate and data gate will be placed at lower distance than optical resolution

 \succ Necessary to localize exact transistor connected to key \rightarrow security by maximizing

All Rights Reserved

≁t

Concealing Gate: EOFM Protection

• Two transistors operating at same frequency and switching at same direction, i.e., either $1 \rightarrow 0$ or vice versa, is difficult to differentiate. (see A2 implementation) • Two transistors operating at same frequency but with opposite switching direction will be easy to distinguish, though the transistors may be placed lower than optical resolution distance. (see A1 implementation)

Concealing Gate: EOFM Protection

• P_{C1} mask P_{T1} activity by merging the edges of P_{T2} (Fig A) or

P_{C2} (Fig. B). If distance between P_{C1} and P_{C2} is less than optical resolution, the PT1 transistor can be assumed to be protected.

Concealing Gate: EOFM/EOP Protection

EOFM Data with Concealing Gate

EOP Data with Concealing Gate

2TFF = 1

(b)

(c)

Nanopyramid to Camouflage Circuit Activity

 Laser scattering is applicable for any aser based attack approach
 No additional power or area

Material Based Solution: Literature Review

Etched/Void Via

- - Removable by polishing

Device Based Solution: Literature Review

Circuit Based Solution: Literature Review

Additional area and optimization required

 \succ Mostly ineffective against thermal laser \rightarrow focused on laser fault detection

