Optical Analysis of Integrated Circuits

Presented by: Mir Tanjidur Rahman Dr. Navid Asadi

Physical Inspection and AttacKs on ElectronicS (PHIKS)

PHOTON IS OUR BUSINESS

Optical Attacks/Inspection

- Access to the surface of the chip without creating contacts with internal wires Optical interactions with transistors using
- known Failure Analysis (FA) tools
- Normally does not damage the system
- May or may not leave tamper evidence

IC Backside vs. IC Frontside

Frontside: Multiple interconnect layers obstruct the optical path to transistor devices

Backside: Active devices are directly accessible

Passivation

Metal

Transistor

Bulk silicon

Sample Preparation Step

optical inspection of SoC implementatio

Sample Preparation Challenges

Smoothness of surface defines the quality of the imaging

Polishing aftermath: Surface roughness

Polishing aftermath: Residue on surface

Plasma etch: Chip mostly dead/ impossible for chip connected to board All Rights Reserved

Optical Backside Analysis

- Photon Emission
- Laser Stimulation/Fault Injection
- Optical Contactless Probing

All Rights Reserved

Bulk Si

Equipement Examples

HAMAMATSU PHEMOS

SEMICAPS LTP 3000

Optical Resolution And Laser Spot Size

Absorption depth of silicon at 300K

Near Infra Red ($\lambda \approx 1\mu m$ +) ideal for backside access $R \approx \lambda / (2 NA), NA:$ Numerical Aperture (in air < 1) With $\lambda \approx 1 \mu m$, *R* is at best around 500nm

Source: Boit, C., et al. "From IC debug to hardware security risk: The power of backside access and optical interaction." Physical and Failure Analysis of Integrated Circuits (IPFA), 2016 IEEE 23rd International Symposium on the. IEEE, 2016.

LASER SPOT SIZE

- For any confocal microscope, spot diameter, $D = 1.22\lambda / NA$
- Follows Gaussian distribution
- Spot size is defined at full width at half maximum of intensity
- Defines the sharpness of the edges, effect of laser stimulation on neighbor cells

	Optical Resolution (1			Laser Spot	t Size
s	Numerical Aperture (NA)	<i>λ</i> = 1300 nm	λ = 1064 nm	λ = 1300 nm	ر 106
	0.40	1625	1330	2803	22
	0.76/1	855/650	700/532	1476/1121	120

Solid Immersion Lens (SIL)

- A Introducing immersion, namely a spherical solid immersion lens (SIL) on back surface. Optical Resolution, $R \approx \lambda / (2n NA)$
- NA is increased by the index of refraction $n_{S/L}$. For silicon and $\lambda = 1$ μ m, *n* is 3.5, resulting in a maximum *R* of around 150 nm.

What is the required Resolution?

- NIR + Si SIL resolution ca 100-120nm
- D&D requires to resolve pitch •
- Pitch ca 3.5-8x min. feature size \bullet
- NIR good for > 20nm node • technologies

But: there is some tolerance

What is the required Resolution?

- NIR + Si SIL resolution ca 100-120nm
- D&D requires to resolve pitch •
- Pitch ca 3.5-8x min. feature size \bullet
- NIR good for > 20nm node • technologies

But: there is some tolerance

What is the required Resolution in FinFET age?

- NIR + Si SIL resolution ca 100-120nm
- D & D requires to resolve pitch
- Good for > 20nm node tech
- For FinFETs, min 2x improvement necessary

Image: https://www.synopsys.com/Company/Publications/DWTB/PublishingImages/dwtb-finfet-jan2013-fig2.JPG

Pitch vs. Node Technology

- The only solution is the reduction of $\lambda, R \approx \lambda / (2 NA)$
- Lasers ~ 650nm available
- But the silicon has to be polished to lacksquare10 µm to be transparent for visible light
- Currently not available on many optical equipment

Source: Boit, C., et al. "From IC debug to hardware security risk: The power of backside access and optical interaction." *Physical and Failure* Analysis of Integrated Circuits (IPFA), 2016 IEEE 23rd International Symposium on the. IEEE, 2016.

Pitch vs. Node Technology: Comparison for SIL

Research

Wavelength + Lens	NA	Resolution (nm)	Diameter (nm)
1300nm + 50x lens*	0.76	855	1476
1064nm + 50x lens*	0.76	700	1208
1300nm + SIL**	3.5	185	453
650 nm + SIL**	3.4	95.6	233

*=50X is objective lens used in optical attacks.

** = SIL stands for solid immersion lens.

		Optical R	Laser Spot Size		
lens	Numerical Aperture (NA)	λ = 1300 nm	λ = 1064 nm	λ = 1300 nm	10
20x	0.40	1625	1330	2803	
50x	0.76/1	855/650	700/532	1476/1121	12

Optical Inspection/Attack

Optical Attacks/Inspection Taxonomy

Photon Emission Analysis

Photon Emission Analysis (PEA)

activity in the chip

activity in the

> Photons with higher kinetic energy emits photons

Photons from N-MOSFET >> photons from P-MOSFET

> 2-D mapping image of photons captured by InGaAs detector generated

Mechanism of Photon Emission

A comparative Chart of Wavelength Sensitivity Ranges

- Due to ultra-miniaturization, semiconductor devices now have lower operating voltages
- The light intensity emitted from transistors becomes weak (E α V) and also cause light emissions to occur at longer wavelengths (E α 1/ λ).
- To detect such weak light emissions, a detector with high sensitivity in the near-infrared range longer than 900 nm is required.

Optical Contactless Probing

Optical Contactless Probing

- Changes in the absorption coefficient and the refractive index of device in active area by electrical field and current.
- altered by voltage/current —> probing of electrical signals on the node
- detecting node switching with this frequency

• Electro-Optical Probing (EOP) or Laser Voltage Probing (LVP): Optical beam intensity

• Electro-Optical Frequency Mapping (EOFM) or Laser Voltage Imaging (LVI): Feeding the reflected signal to a detector with a narrow band frequency filter while scanning the laser—>

Optical Contactless Probing

by electrical field and free carrier density.

Changes in the absorption coefficient and the refractive index of device in active area

Mechanism of EOP/EOFM Analysis

Research

EOFM Image Acquiring and Application

Acquire waveform at the suspicious points in the EOFM image

ex. Delayed or dull waveform

Elements with specific frequency observation and EOP analysis All Rights Reserved

Scan Flipflop Operation Check by EOFM/EOP

Experiment setting

EOFM image

Confirming analysis site in EOFM image and acquiring EOP waveform

Laser Stimulation / **Optical Beam Induced Resistance Change** (OBIRCH)

Laser Stimulation Analysis

- or thermal effect in the chip
- method changes

Laser Fault Injection

 $> \lambda < 1.1 \,\mu m$ used for laser stimulation Used for changing the state of transistor in the circuit

Laser Fault Injection

$> \lambda < 1.1 \,\mu m$ used for laser stimulation Used for changing the state of transistor in the circuit

Laser Change by Laser Irradiation

- The chip is scanned with a laser beam with either thermal or photoeletric interaction (TLS/PLS)
- The current changes in response to the stimulation due to resistance change and Seebeck effect.

on semiconductor on metal Without laser irradiation Laser Laser Ι-ΔΙ *I+∆I* V = R * I $V = (R + \Delta R)^* (I - \Delta I)$ $V = (R - \Delta R)^* (I + \Delta I)$ $\Delta I \approx -(\Delta R/V) * I^2$ $\Delta I \approx + (\Delta R/V) * I^2$ No change Laser heat makes R decrease Laser heat makes R increase (TCR* is minus) and then (TCR* is plus) and then current increase current decrease

*TCR = Temperature Coefficient of Resistance

With

laser irradiation

Mechanism of OBIRCH Analysis

generate no electron-hole pair at p-n

voltage

