

Trojan Scanner

Navid Asadi

Physical Inspection and AttacKs on ElectronicS (PHIKS)

Hardware Trojan as a Threat

Hardware Trojan:

• Malicious addition, deletion or modification to existing circuit elements.

What Hardware Trojans can do?

- Reduce the reliability to cause early failure
- Hijack to control or change the functionality
- Leak sensitive information (Encryption keys)

Targeted Applications

- IoT devices (Home automation Google Home, Alexa, Security cams, locks)
- Aerospace & Military applications
- Civilian applications like Aviation, Security, Healthcare, Financial...and many more

Introduction: Horizontal Business Model

- The economics of the semiconductor industry today have created a 'horizontal' business model.
- Cost of maintaining top-end fab prohibitively expensive ~ \$\$ Billions.
- Foundries at advanced nodes are almost exclusively off-shore today.

All Rights Reserved

FLORIDA

Trust Issues in Design, Fabrication, etc.

Trust Issues

Foundry receives (almost) everything from design house

> GDSII layout ⇒ Netlist, Test Vectors

 A design house has little to no control over an off-shore foundry.

Threats

- IC Threats
 - > Overproduction
 - > Trojan Insertion
- IP Threats
- Out-of-Spec/Defective
 Products

FLORIDA

Trojan Problem for Government

- Trust Issues
 - Foundry receives (almost) everything from design house

> GDSII layout \Rightarrow Netlist, Test Vectors

 A design house has little to no control over an off-shore foundry.

- Threats
 - IC Threats
 - > Overproduction
 - > Trojan Insertion
 - IP Threats
 - Out-of-Spec/Defective Products

Taxonomy of Hardware Trojans

Research

Research

Research

Next Generation Trojans - Challenges

All Rights Reserved

Research

Hardware Trojans and their Footprints

Trojan Type	Implemented by	Payload	
AES-T100	Flip Flops & XOR	Leaking LC circuit	
AES-T400	Modulating unused pin on chip	Transmitting key bits	
AES-T1800	Shift Register	Increased power	
<u>AES - T600</u>	Shift Register & Two Inverters	Leakage current	
<u>B15-T100</u>	6 Logic Cells Inserted	Reducing clock frequency	
<u>B19-T300</u>	Counter Circuit	Manipulation of address bus	
Basic RSA - T200	Disable encoding on RTL level	Denial of service	
RS232-T1800	Chain of Invertors	No Info in benchmark	
EthernetMAC10GE-T100	Critical path is widened / narrowed	Reliability Impact	
EthernetMAC10GE-T200	Part of clock tree is widened	Reliability Impact	
EthernetMAC10GE-T300	Part of clock tree is narrowed	Reliability Impact	
EthernetMAC10GE-T400	Narrowing power lines	Reliability Impact	
EthernetMAC10GE-T500	Narrowing ground lines	Reliability Impact	
EthernetMAC10GE-T600	Making design susceptible to crosstalk	Denial of service	

In an IC, all Hardware Trojans leave their footprints on either Active or Metal Layer!!

Source: Unique hardware Trojans from the list of 94 Trojans reported at TrustHub

SEM Imaging Time Table

Technology node: 130nm; Chip size: 1.5mm x 1.5 mm

	•••			
Scanning Speed & Resolution	1500um x 1500um	500um x 500um	100um x 100um	20um x 20um
3 (1.0 µs/Pixel)				
(512 x 512)	1 sec	9 sec	3 min 45 sec	1 hr 33min 45 sec
(1024 x 1024)	2 sec	18 sec	7 min 30 sec	3 hr 7 min 30 sec
(2048 x 2048)	6 sec	54 sec	22 min 30 sec	9 hr 22 min 30 sec
4 (3.2 µs/Pixel)				
(512 x 512)	1 sec	9 sec	3 min 45 sec	1 hr 33 min 45 sec
(1024 x 1024)	4 sec	36 sec	15 min 10 sec	6 hr 13 min 10 sec
(2048 x 2048)	14 sec	2 min 5 sec	52 min 5 sec	21 hr 42 min 5 sec
5 (10.0 µs/Pixel)				
(512 x 512)	5 sec	45 sec	18 min 45 sec	7 hr 48 min 45 sec
(1024 x 1024)	22 sec	3 min 18 sec	1 hr 22 min 30 sec	1 d 10hr 22 min 30sec
(2048 x 2048)	1 min 25 sec	6min 25 sec	5 hr 18 min 45 sec	5 d 12 hr 48 min 45 sec
6(32 µs/Pixel)				
(512 x 512)	11 sec	1 min 30 sec	36 min	15 hr
(1024 x 1024)	43 sec	6 min 30 sec	2 hr 45 min	1 d 21 hr 5 min
(2048 x 2048)	2 min 52 sec	24 min	10 hr 45 min 10 sec	11 day 1 hr 30 min
7 (100.0 µs/Pixel)				
(512 x 512)	32 sec	4 min 48 sec	2 hr	2 days 2 hours
(1024 x 1024)	2 min 6 sec	18 min 54 sec	7 hr 52 min 30 sec	8 d 4 hr 25 min 6 sec
(2048 x 2048)	7 min 54 sec	1 hr 11 min 6 sec	1 d 5 hr 37 min 30 sec	30 d 20 hr 37 min 30 sec
		All Rights Rese	sved	

Research

SEM Image Collection

Trojan Scanner: Golden Chip

Case Study of Trojan & Footprints on ICs

Size of Change	Change Type		Footprint
Smallest			Active Region
		NAND → A.B+C (or any custom logic)	Active Region
	Modification	Splitting active P well \rightarrow P + N well	Active Region
	Mouncation	Changing number of inputs	Active Region
		Resizing $1x \rightarrow 2x$	Active Region
		Interconnects / Power / GND - Thinning	Metal Layer 1
	Camouflage Cells	NOR $\leftarrow \rightarrow$ NAND	Metal layer 1
		Invertor NOT	Active Region
	Insertion /	NAND / NOR	Active Region
↓ ↓	Deletion		
Biggest		Capacitor	Active Region

Modification of Logic Gates

NAND $\leftarrow \rightarrow$ A.B + C

Insertion Based Trojans

Research

*Capacitor as a Trojan Implemented : A2: Analog Malicious Hardware by Yang et. Al #Trojan RS232-T1800 Implemented using two Inverters – Trust Hub

a. Original SEM Image

Scan the whole die as fast as possible while capturing sufficient feature details to compare with the layout.

b. Histogram Equalization

Increase contrast of doping regions in SEM image for better feature detection.

c. Gaussian Filtering

A 5x5 Gaussian filter is applied to remove the Gaussian noise in SEM image.

d. Median Filtering

A 3x3 median filter is applied to effectively remove noise and preserve the edge information to detect every unique footprint of a logic cell.

e. Thresholding

Segmenting SEM image into a binary image to separate the dark background and the foreground active region shape.

Trojan Detection

0.9

0.5

0.4

0.2

Slowest Fastest Speed: 32 µs /pixel Speed: 10 µs /pixel Speed: 3.2 µs /pixel **Filtering Denoising** Thresholding **Golden IC SSIM**

 $SSIM(x, y) = l(x, y) \cdot c(x, y) \cdot s(x, y)$

Trojan Scanner: Golden Layout

1. Descriptor Assignment

Assigning Fourier descriptor (FD) to every unique logic cell from SEM Image and Layout.

2. Classifier Training

Training machine learning model using different variations of a logic cell to account for imaging and manufacturing.

3. Predictor Matching

Research

A machine learning based predictor matches the SEM and layout descriptors to detect a change.

Descriptor Assignment

Descriptor Assignment --- Fourier Descriptor

- a) Obtain cell's mask by binary thresholding.
- b) Obtain contour of the mask based on the pixel difference of the shape edge.
- c) Obtain shape signature: The distance between contour centroid and contour coordinates.
- d) Calculate Fourier transform of shape signature:

$$f[k] = DFT(C[n]) = \frac{1}{N} \sum_{n=0}^{N-1} C[n] e^{(\frac{-j2\pi kn}{N})}, \quad k = 0, 1, \dots, N-1 \quad (1)$$

where f[k] is the Fourier transform of the k^{th} coordinate and C[n] is the contour.

e) Combine upper and lower Fourier descriptors for the whole gate:

$$FD_g = [f_{upper}[k], f_{lower}[l]], k = 0, 1, ..., N - 1 and l = 1, 2$$

where f_{upper} and f_{lower} is upper and lower half of logic cell respectively.

Kesearc

(Logic cell)

(a. Cell mask)

(2)

Classifier Training

Training machine learning model using different variations of a logic cell to account for imaging and manufacturing.

Predictor Matching

Layout vs. SEM Image Comparison

Layout cell labels

Layout vs. SEM Image Comparison

SEM Image

1. Modification of logic cell

Logic cells encircled Location at 1, 2 and 4 are modified to emulate Trojan and successfully detected as change.

2. Insertion of logic cell Logic cell insertion at empty space location 3 is detected as an insertion.

Trojan Scanner Challenges

Camouflage Cells Detection

FLORIDA

Standard cell layout of regular 2-input (a) NAND and (b) NOR gate. Camouflaged standard cell layouts of 2-input (c) NAND and (d) NOR gate.

RE vs Trojan Scanner

Reverse Engineering vs Trojan Scanner

	Full Reverse Engineering	Trojan Scanner
# of samples required	50-100	1
Detected Trojans	All Types	All types except reliability Trojans
Processing time	Months	hours
Functionality extraction	Required	Not required
Gate Identification	Required	Not required

Summary of Detection Methods

Hardware Trojans	Logic Test	Power SCA	Delay SCA	Run Time	Trojan Scanner
Functional	Maybe	Maybe	Maybe	Maybe	\checkmark
Parametric	×	\checkmark	\checkmark	X	\checkmark
Big	Maybe	\checkmark	Maybe	\checkmark	\checkmark
Small	\checkmark	×	✓	Maybe	\checkmark
Tight	\checkmark	\checkmark	\checkmark	Maybe	\checkmark
Loose	\checkmark	Maybe	\checkmark	Maybe	\checkmark

Readings

- IEEE transaction on image processing: Image Quality Assessment: From Error Visibility to Structural Similarity
- ACM TODAES: Hardware Trojans: lessons learned after one decade of research
- IEEE design & test of computers: A survey of hardware Trojan taxonomy and detection

