

PHysical Inspection and attacKs on electronicS (PHIKS)

Navid Asadi

Supply Chain Complexity

Increases the risk of product counterfeiting

tion \$ 400,000 -350,000 -250,000 -150,000 -50,000 -50,000 -100,0000 -100,

Pincipie Zone of Production Pincipie Zone of Transl Pincipie Zone of Transl Pincipie Zone of Consumption

Share
2%
41%
10%
6%
16%
0%
25%
100%

Advancements and cost

reduction of transportation

and rise of e-commerce are

easing the globalization

All Rights Reserved

2011 2012 2013

2010

0

Economic Impact

(\$ Billions)

Research

United States

- Trade secret theft is estimated to be 1-3 % of U.S. GDP
- **NSA** and **FBI** estimated the loss to be hundreds of billion dollars annually
- **750** thousand jobs at risk

Worldwide

- **5-7** % of world trades
- 2.5 million jobs at risk every year

Electronics

Represent a hazard if incorporated in critical systems: Transportation, Energy, Communication, health, etc.

1% of semiconductor revenue comes from military

Raytheon, Honeywell, Lockheed Martin delivered systems containing counterfeit parts

Cost of Counterfeit Incidents in Military

\$4 million in 7 cases in
military 2011
\$165 million in Russian Mars
spacecraft crashed in 2012

Fake electronics becoming military danger

Counterfeit Chinese Parts Slipping Into U.S. Military Aircraft: Report

By LEE FERRAN + May 22, 2012

Military Systems Affected

Aircrafts and helicopter Weapons systems, Missile defense system

All Rights Reserved

UNIVERSITY of **FLORIDA**

Design-for-Anti-Counterfeit (DfAC)

- On-chip (PUF, active hardware metering, SST, CDIR, etc.): only applicable to <u>new</u> parts
- On-package (DNA and nanorods): expensive and not widely accepted by industry

Electrical Testing: Nontrivial to cover all scenarios

- Require knowledge of each IC
- Different test setups

Physical Inspection: Scrutinize external, internal defects, and material composition (<u>closest</u> to all-in-one)

 Covers all part types, all states of existence, and most counterfeit types

Defect Detection

- Different imaging modalities are used for detecting defects
- Counterfeit electronics are divided into 7 different classes.

Pharmaceutical

Ingredients found in counterfeit medicines

Newsweek

Heavy metals: Mercury, lead Actual poison: rat poison, antifreeze Contaminants: road paint, floor wax

Up to 1 million people die annually from counterfeit pharmaceuticals

BUSINESS

Counterfeit

OPINION Q **TECH & SCIENCE** CULTURE SPORTS **TECH & SCIENCE** THE FAKE DRUG INDUSTRY IS EXPLODING, AND WE CAN'T DO ANYTHING ABOUT IT

BY ALEXANDRA OSSOLA ON 9/17/15 AT 6:55 AM

700 fentanyl-related death reports in U.S. between 2013 - 2014 65% increase of Fentanyl from 2014 to 2015

Automotive Parts

Economical impact

In 2015, MEMA estimated automotive counterfeiting impacted **\$300-\$500 billion** and is growing 10% every year Fatalities 90 deaths reported in Dubai roads

90 **deaths** reported in Dubai roads in first half of 2010 because of counterfeits

Other Products and Impacts

Counterfeit Socioeconomic Impacts of All Counterfeits

Consumers	Businesses	Governments
Loss of life, safety and reliability issues, theft of private information, Low quality products	Lost sales, decreased profit, loss of brand trust	Decreased tax revenue, increased spending on CBP, welfare, and health services, etc.

Microscopy and FA Tools

- Imaging and debugging tools are developed for fault analysis.
- Fast advancement in FIB/SEM imaging
- Advancement in photonic emission microscopy, LVS, IR analysis
- Development in micro and nano probing, EBIC, EBAC

Failure Analysis Market

Kesearc

- Failure Analysis Market by equipment (SEM, TEM, FIB, Dual), Technology (SIMS, EDX, CMP, FIB, BIM, RIE), Application (Material Science, Bio Science, Industrial & Electronics) worth \$10B by 2020 with CAGR 7.5%.
- Highly competitive with a few leading players, namely, Carl Zeiss SMT GmbH (Germany), FEI Company (U.S.), JEOL Ltd. (Japan), Hitachi High-Technologies (Japan) and Tescan (U.S.), etc.

Microscopy and Imaging Applications

Course Overview

- Physical access to the chip is required
 - > Non-Invasive Attack: Observe and manipulating device without any physical harm
 - Invasive Attack: Complete deprocessing of the chip to extract information
 - Semi-invasive Attack: Removing package keeping the chip structure intact

Course Overview

- Microscopy methods to detect defects on electronics
- Common defects and the tools to detect them automatically
- Ionization effect on ICs from X-rays during inspection
- Non-destructive testing for integrity analysis
- PCB reverse engineering (RE)
- Non-destructive PCB RE
- Image filtering and segmentation methods for netlist extraction
- IC reverse engineering methods; Sample prep, delayering, etc.
- Advanced tools for fast accurate RE, Rapid Trojan detection, etc.
- Introduce attack modules for data extraction
- reading non-volatile memory data

- Extract keys
- Fault injection using laser.
- Attacks on microprocessors, etc.
- Probing attacks
- Extract design for obfuscated gates
- Anti-probing techniques

Optical Microscopy

- Resolution: few um to mm
- Colorful images
- 2D and 3D surface images
- No sample prep required
- Fast and cheap
- Non-destructive

Black top

Retinning/color variations

X-ray Tomography

- Resolution: 1-50 um
- 3D images of internal structure
- Basic sample prep required
- More expensive and not slow
- Non-destructive

SEM and FIB

Dual beam-Plasma FIB Probe current: 20 pA to 2 µA Material removal rate: 2000 µm³/s Maximum field of view: 17 mm

- Resolution: 5nm few um
- 2D and 3D surface images
- Advanced sample prep required
- More expensive and comparatively slow
- Destructive/Non-destructive

Dual beam-Ga FIB Probe current: 1 pA to 40 nA Material removal rate: 150 µm³/s Maximum field of view: 17 mm

He and Ne ion Micorscopy

Research

Comparison between He/Ne and Ga FIB parameters

Focused	Maximum	Proximal	Milled	Probe size	Imaging	Material	End point
lon	deposited metal	defects	features		resolution	removal	detection
Beam	resistivity		aspect ratio			speed	option
He/Ne	High	Very low	High	0.5/1.9 nm	0.2 nm	Medium	Available
Ga	Low	High	Low	Over 5nm	Sub 10 nm	High	Not available

Photon Emission Microscopy

Research

All Rights Reserved

Detector

PHIKS

Meeting Time

- Tuesday 3:00 4:55pm
- Thursday 4:05 4:55p
- Meeting Place
 - MAE 126 FICS conference room
 - o MAE 122 SCAN lab

Office hours

- \circ Mondays 4:00 5:00 pm
- Grading
 - Assignments: 20%
 - Exam: 20%
 - Student Presentation: 30%
 - Term Report: 30%

PHIKS team

- Tanjid Rahman (TA)
- Nitin Varshney (lab engineer)

Reading

Book chapter: Counterfeit Integrated Circuits: Detection, Avoidance, and the Challenges Ahead

