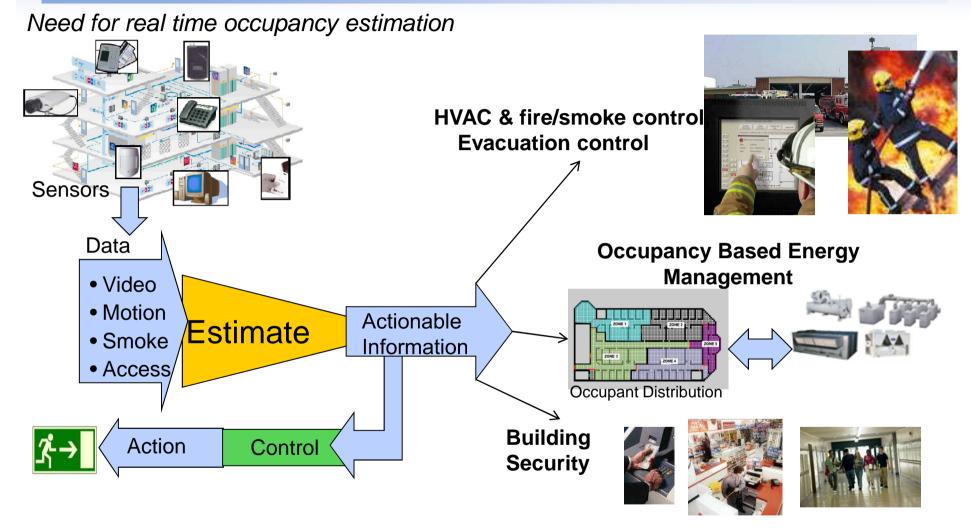
Sensor-Utility-Network (SUN) Method for Estimating Occupancy in Buildings

Presented by: Amit Surana*


Joint Work With:

S.P. Meyn (University of Illinois, Urbana-Champaign, IL, U.S.)

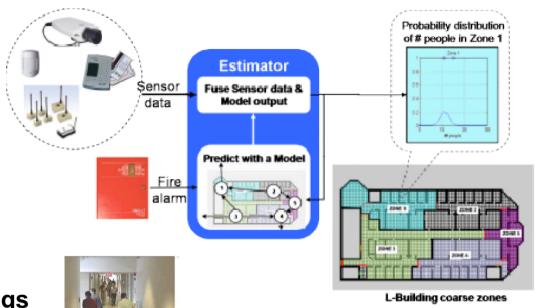
Y. Lin, S. M. Oggianu, T. A. Frewen, S. Narayanan, I. Fedchenia

(*United Technologies Research Center (UTRC), E. Hartford, CT 06108, U.S.)

Building Security and Energy Management

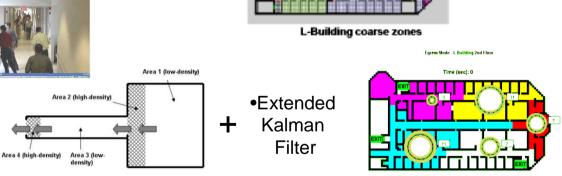
Challenges/Barriers

- •Information volume (100's of heterogeneous sensors, 1000's of agents)
- •Dynamically evolving situation (threat& response time scale overlap)
- •Uncertainty (inaccurate, missing sensor data)


Enablers

- Models for occupancy
- •Emerging inexpensive sensors with embedded intelligence and communication capability

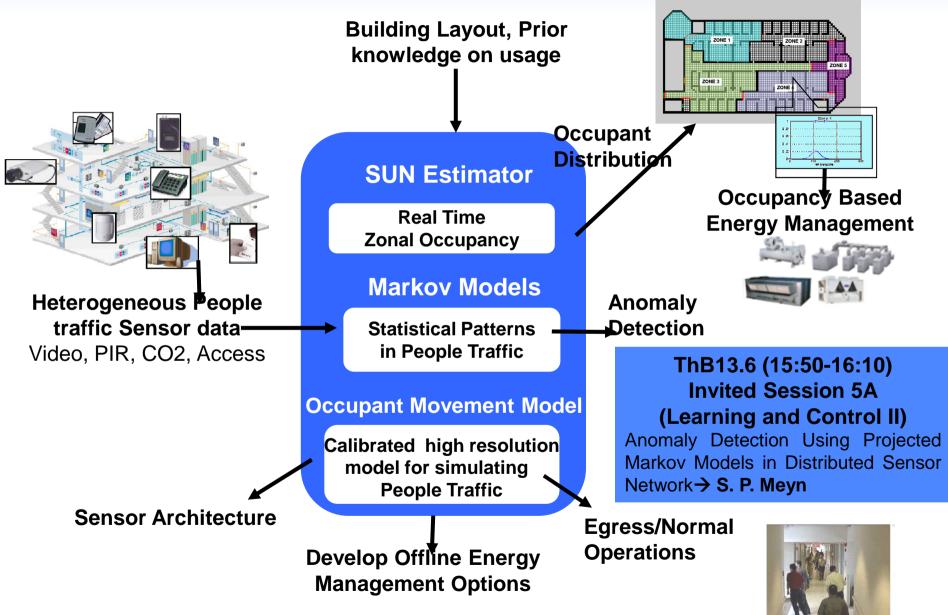
Related Work: Real time Occupancy Estimation


Utilizes Sensors and Models in Real-Time

Egress in Buildings

Tomastik et al. 08 (UTRC)

•Kinetic Model for evacuation dynamics (Models vacancies in congested regions and agents in "rarified" regions)



Normal Building Operation: Machine Learning Approaches, CBPD (CMU)

- •Use of SVM, ANN, HMM (Lam et al. 09)
- •Episode discovery and semi-Markov models for occupancy based ventilation control (Dong and Andrewes 09)

Occupancy Modeling Framework (UTRC)

UTRC L Building Test Bed

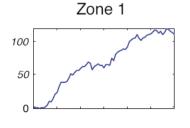
Video (People Count), PIR (Passive Infra Red), Co2 Sensors

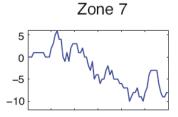
Video (People Count)

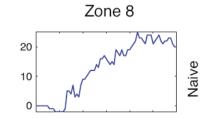
Exhibit significant variance & bias:

- •Overcount: Poor lighting condition (during early & late hours), Turning light switch on/off, Several crossings due to occupants loitering.
- •Undercount: Multiple people crossing

PIR (Motion Detection)

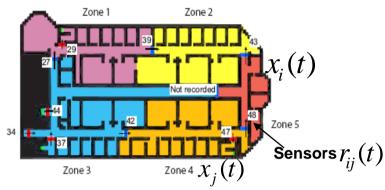

•Do not give people count information


C0₂ Sensors (Occupancy)


- •High variability due to fluctuations in ambient C0₂ levels, HVAC system settings, and door open/close status
- •Suffer from slow response time (about 10-20 minutes in this study)

Naive Estimator: People Count

$$\widehat{x}_i(t+1) - \widehat{x}_i(t) = \sum_j \widehat{r}_{ji}(t) - \sum_l \widehat{r}_{il}(t),$$



Motivation for SUN Estimation Framework

Role of Constraints and Prior Knowledge in Estimation

$$\phi(t) = \begin{pmatrix} x(t) \\ r(t) \end{pmatrix} \quad \begin{array}{l} \text{Occupancy} \\ \text{Flow rate} \\ \\ x_i(t+1) - x_i(t) = \sum_i r_{ji}(t) - \sum_l r_{il}(t) \\ \\ y(t) = C\phi(t) = \begin{bmatrix} C^x & 0 \\ 0 & C^r \end{bmatrix} \phi(t) \end{array}$$

•Message from Linear Systems theory
$$\begin{array}{c} \phi(t+1) = A\phi(t) + W(t+1) \\ y(t) = C\phi(t) + V(t+1) \end{array}$$

Any linear model of occupancy is not observable based on flow measurements (Rule out construction of an asymptotically stable estimator without further structure on behavior)

Message from Statistics

$$\phi(t+1) = f_t(\phi(t)) + W(t+1)$$
$$Y(t) = h_t(\phi(t)) + V(t+1)$$

MAP (Maximum a posteriori)

$$\hat{\phi}(t) = \arg\max_{\phi} p(\phi \mid Y_0^t).$$

$$-\log(p(\phi_0,\ldots,\phi_T\mid y_0,\ldots,y_{T-1})) \propto$$

Gaussian Assumptions
$$\|\phi_0 - \bar{\phi}_0\|_{\Sigma_0^{-1}}^2 + \sum_{t=0}^{T-1} (\|y(t) - h_t(\phi(t))\|_{\Sigma_{yt}^{-1}}^2 \\ + \|\phi(t+1) - f_t(\phi(t))\|_{\Sigma_{dt}^{-1}}^2)$$

Information on sensor and dynamics naturally arise

Model is constrained (Gaussian assumption invalid), regardless estimation algorithm defined as an optimization, subject to state space constraints is attractive

SUN: Receding Horizon Estimation

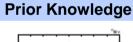
SUN: Sensor, Utility & Network Structure combined through Constrained Optimization

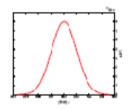
 $\begin{array}{c|c} \min & P_0(\phi_0) + \sum_{t=0}^T P_y(\phi(t),y(t)) + \sum_{t=0}^{T-1} P_d(\phi(t+1),\phi(t)) + \sum_{t=0}^T U_x(\phi(t)) \\ \textbf{Constrained} \\ \textbf{Optimization} & Flow Balance \\ \textbf{Bounds on Occupancy} & XLB\left(t\right) \leq x(t) \leq XUB\left(t\right), \forall t \\ \textbf{& Flow rates} & RLB\left(t\right) \leq r(t) \leq RUB\left(t\right), \forall t \\ \end{array}$

Initial state penalty function

Model dynamics penalty function, e.g.: continuity

$$P_0(\phi_0) = \left\| \phi_0 - \hat{\phi_0} \right\|_{\Sigma_0^{-1}}^2$$

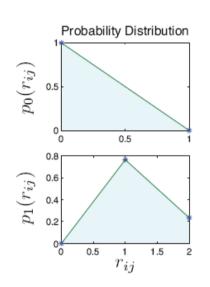

$$P_d(\phi(t+1),\phi(t)) = \|x(t+1) - x(t)\|_{\Sigma_x^{-1}}^2 + \|r(t+1) - r(t)\|_{\Sigma_r^{-1}}^2$$

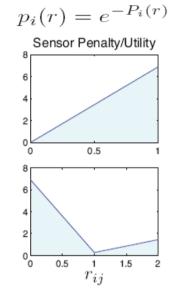

Model and sensor consistency penalty function

Sensor Measurements
$$P_{y}(\phi(t), y(t)) = \left\| r(t) - y(t) \right\|_{\Sigma_{y_{t}}^{-1}}^{2}$$

Occupancy Utility Function

$$U_{x}(x(t)) = ||x(t) - m(t)||^{2} \sum_{xt}^{-1}$$


- •Building space usage pattern
- •Preferences for walking speed, proximity, path
- •Clustering, Lane formation
- •Behavior dependence on age, mobility, aggressiveness...



Soft Sensor Penalty for Video and PIR Sensors

Composed (in time) sensor utility admits a quadratic approximation

Soft Penalty /Utility for Sensor

Quadratic Soft Penalty

$$\mathcal{P}_y(\phi, y) = \sum_{i=1}^{N_f} \sum_{j>i} P_{y_{ij}}$$

$$P_{y_{ij}}(r_{ij}, y_{ij}) = \frac{1}{2}(y_{ij} - b_{ij}(y_{ij}))^2 / \sigma_{ij}^2$$

Bias Variance

Composition of Soft Penalty

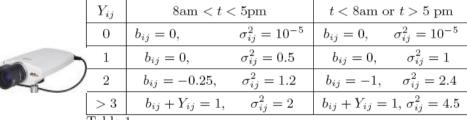


Table 1

Soft penalty/utility parameters for People Count Sensors

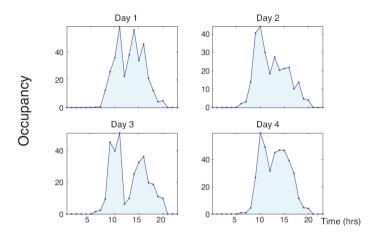
Y_{ij}	$8\mathrm{am} < t < 5\mathrm{pm}$		t < 8am or $t > 5$ pm	
0	$b_{ij}=0,$	$\sigma_{ij}^2 = 10^{-2}$	$b_{ij}=0,$	$\sigma_{ij}^2 = 10^{-4}$
1	$b_{ij} = 0,$	$\sigma_{ij}^2 = 100$	$b_{ij} = 0,$	$\sigma_{ij}^2 = 1$

Table 2

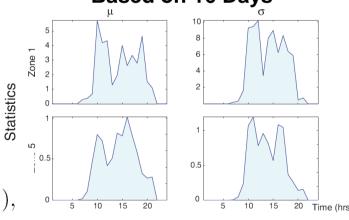
Soft penalty/utility parameters for PIR Sensors

Occupancy Utility via Smoothing

Smoothing using historical data


SUN for whole day enforcing zero occupancy at boundaries & using Sensor Utility (hourly time scale)

$$\mu_i = N^{-1} \sum_{k=1}^{N} \widehat{x}_i^k, \qquad \sigma_i^2 = N^{-1} \sum_{k=1}^{N} (\widehat{x}_i^k - \mu_i)^2$$


$$k = 1, \dots, N$$
 Days

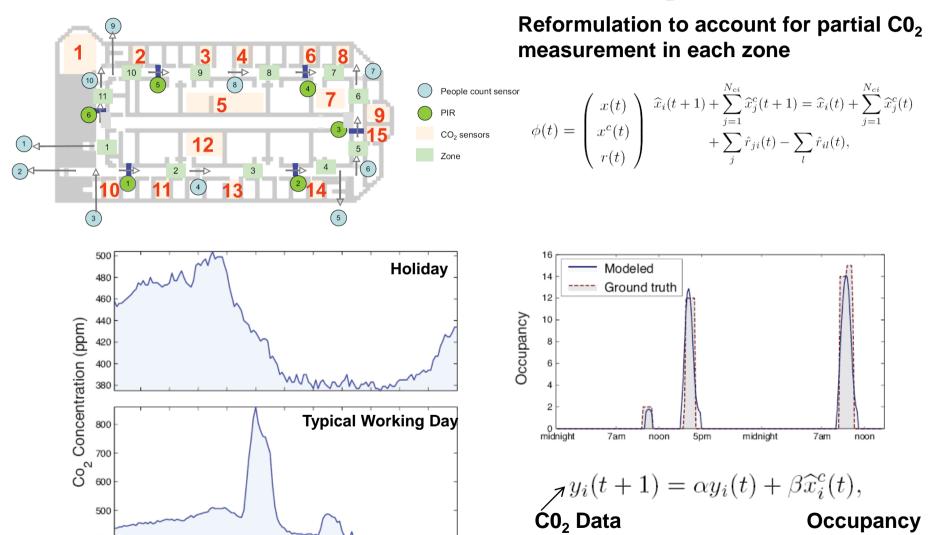
$$\mathcal{U}_i(x_i) = -\frac{1}{2}(x_i - \mu_i)^2 / \sigma_i^2$$

Occupancy Utility
$$\mathcal{U}_x(x) = \sum_{i=1}^{N_z} \mathcal{U}_i(x_i),$$

Based on 16 Days

Prediction

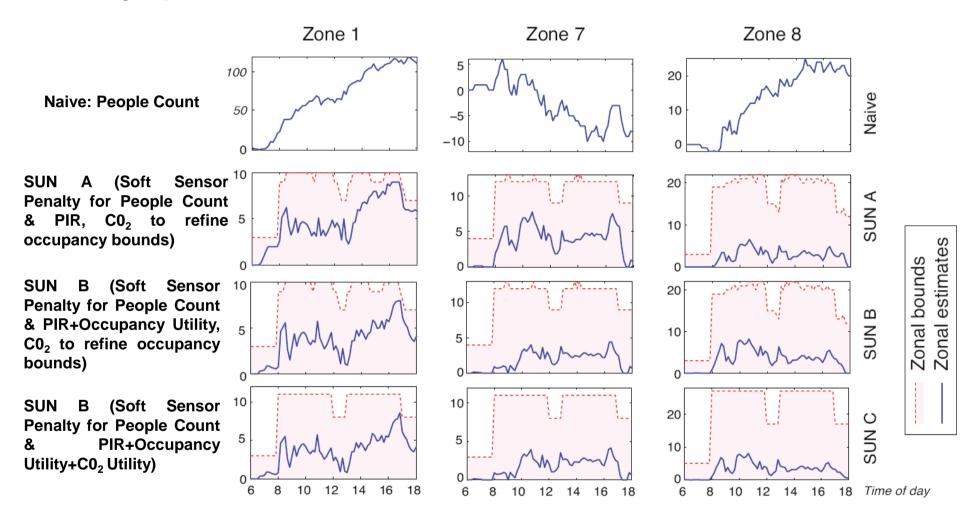
$$\underset{\phi_T, \dots, \phi_{T_1}}{\arg\min} \left\{ \sum_{t=T}^{T_1-1} \left(\mathcal{P}_d(\phi(t+1), \phi(t)) - \mathcal{U}_x(\phi(t)) \right) \right\}$$


Smoothing & Prediction

$$\underset{\phi_0,\dots,\phi_T,\dots,\phi_{T_1}}{\operatorname{arg\,min}} \left[\mathcal{P}_{\text{smooth}} + \mathcal{P}_{\text{predict}} \right]$$

C0₂ Utility

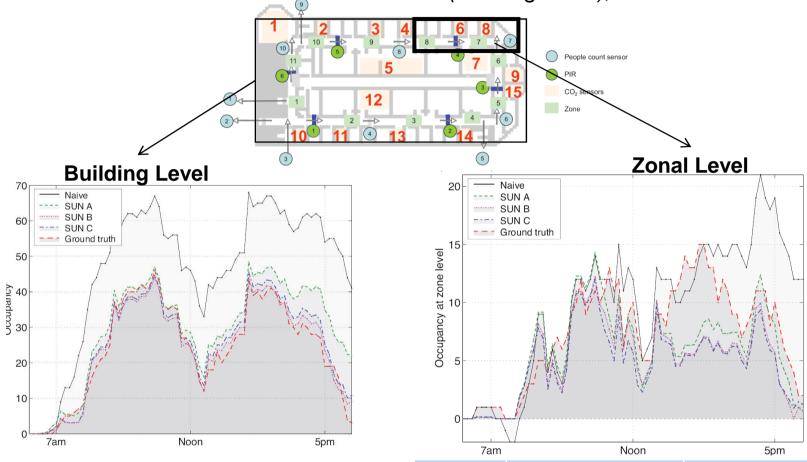
Follow smoothing procedure (like for occupancy) to obtain C02 Utility



22 24 Time (hrs)

Occupancy Estimation using SUN

Assessing impact of different sources of information



Zonal Bounds Based on Typical Room Usage Pattern

Summary: Occupancy Estimation Error

SUN reduces estimation error from 70% to 8-11% (Building Level), 30% to 22% Zonal Level

Ground Truth: Manually by sifting through video data 6pm

$$E = \frac{1}{T_f - T_0} \sum_{t=T_0, x(t) \neq 0}^{T_t} \frac{|x(t) - \hat{x}(t)|}{x(t)},$$

	Building Level Error	Zonal Level Error
Naive	70%	30%
SUN A	21%	20%
SUN B	8%	21%
SUN C	11%	22%

Conclusions

Contributions:

SUN (Sensor-Utility-Network)

- Occupancy estimation via solution of a receding-horizon convex optimization problem
- •Gives a systematic framework for suitably combining inputs from distributed sensor measurements (e.g. video, PIR, access & CO₂), along with historical data regarding building utilization in estimation
- Demonstrated feasibility and superior performance of SUN in a Test Bed

Current Research:

- •Evaluation of performance of SUN estimator in predictive applications (e.g. for occupancy based ventilation control)
- Adaptive techniques for learning building usage and associated utility functions
- •Sensitivity of utility functions for spaces and buildings of similar type
- •Optimal sensor architecture (numbers, types and locations) for SUN performance/cost tradeoff.
- Decentralized SUN

