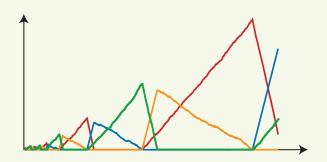


Sean Meyn

Department of Electrical and Computer Engineering
University of Illinois & the Coordinated Science Laboratory

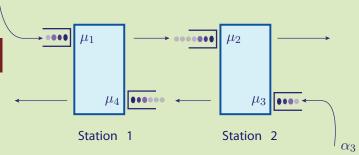
II	Workload	Control Techniques for Complex Networks	Draft copy April 22 2007
5	Workload & Schedulii 5.1 Single server queu 5.2 Workload the (5.3 Relaxations 1)	III Stability 60 Performance CRW the ulag model	318 436
I Mode 4 Sched 4.1	Techniques for Co ling & Control uling Controlled randdm-walk	mplex Networks Draft copy. April 22.2007 11 Simulation & Learning 34 11.4 Control variates and shadow functions	485 503 516 532
4.2 4.3 III Sta 9 Optin	Fluid model	Models & Background	
9.4 9.6	Optimality equations	h-MaxWeight Policies	
	III m s	Heavy Traffic	
III 9			
10		A.3 Equilibrium equations	

C	ontr	Draft copy April 22 2007		
Ι	Mod	deling & Control	34	
4	Scho	eduling	99	
	4.1	Controlled random-walk model	101	
	4.2	Fluid model	109	
	4.3	Control techniques for the fluid model	116	
II	I St	ability & Performance	318	
9	Opt	imization	374	
	9.4	Optimality equations	392	
	0.6	Ontimization in naturaliza	408	



I Models & Background

Controlled Random-Walk Model



$$Q(k+1) = Q(k) + B(k+1)U(k) + A(k+1),$$

$$Q(0) = x$$

Statistics & topology:

$$B(k) = \begin{bmatrix} -S_1(k) & 0 & 0 & 0 \\ S_1(k) & -S_2(k) & 0 & 0 \\ 0 & 0 & -S_3(k) & 0 \\ 0 & 0 & S_3(k) & -S_4(k) \end{bmatrix}$$

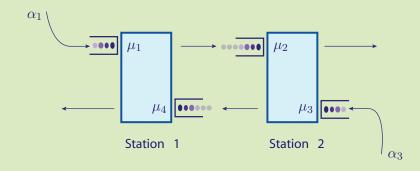
$$A(k) = \begin{bmatrix} A_1(k) \\ 0 \\ A_3(k) \\ 0 \end{bmatrix}$$

Constituency constraints:

$$C U(k) \le \mathbf{1}$$
$$U(k) > \mathbf{0}$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Fluid Model & Workload



$$q(t) = x + Bz(t) + \alpha t, \qquad t \ge 0$$

$$t \geq 0$$

$$q(0) = x$$

Fluid model captures mean-flow:

$$B = E[B(k)] = \begin{bmatrix} -\mu_1 & 0 & 0 & 0\\ \mu_1 & -\mu_2 & 0 & 0\\ 0 & 0 & -\mu_3 & 0\\ 0 & 0 & \mu_3 & -\mu_4 \end{bmatrix}$$

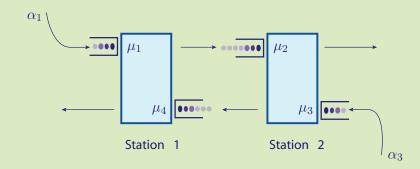
$$\alpha = \mathsf{E}[A(k)] = \begin{bmatrix} \alpha_1 \\ 0 \\ \alpha_3 \\ 0 \end{bmatrix}$$

Workload and load parameters:

$$\xi^{1} = \begin{bmatrix} m_{1} \\ 0 \\ m_{4} \\ m_{4} \end{bmatrix}, \quad \xi^{2} = \begin{bmatrix} m_{2} \\ m_{2} \\ m_{3} \\ 0 \end{bmatrix} \qquad \begin{array}{ll} \rho_{1} & = & m_{1}\alpha_{1} + m_{4}\alpha_{3} \\ \rho_{2} & = & m_{2}\alpha_{1} + m_{3}\alpha_{3} \\ \text{with } m_{i} = \mu_{i}^{-1} \end{array}$$

- Newell 1982, Vandergraft 1983
- Perkins & Kumar 1989
- Chen & Mandelbaum 1991, Cruz 1991

Value Functions



$$q(t) = x + Bz(t) + \alpha t$$

$$Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$$

$$J(x) = \int_0^\infty c(q(t; x)) dt$$

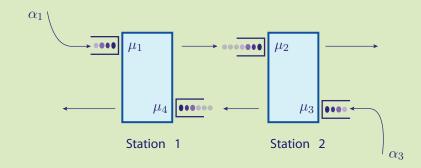
$$h(x) = \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta] \, dt$$

Fluid value function

Relative value function

$$\eta = \int c(x) \, \pi(dx) \\
= average \ cost$$

Value Functions



$$q(t) = x + Bz(t) + \alpha t$$

$$Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$$

$$J(x) = \int_0^\infty c(q(t; x)) dt$$

$$h(x) = \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta] \, dt$$

Fluid value function

Relative value function

$$\eta = \int c(x) \, \pi(dx)$$

Large-state solidarity

$$\lim_{\|x\| \to \infty} \left[\frac{J(x)}{h(x)} \right] = 1$$

Holds for wide class of stabilizing policies, including average-cost optimal policy

Myopic Policy: Fluid Model

$$q(t) = x + Bz(t) + \alpha t$$

$$\frac{d^+}{dt}q(t) = B\zeta(t) + \alpha$$

Constraints: X subset of \mathbb{R}_+^ℓ

U(x) feasible values of $\zeta(t)$

when $x = q(t) \in X$

Given: Convex monotone cost function,

$$c \colon \mathbb{R}_+^\ell \to \mathbb{R}_+$$

Myopic Policy: Fluid Model

$$\frac{d^+}{dt}q(t) = B\zeta(t) + \alpha$$

Constraints: X subset of \mathbb{R}_+^ℓ

U(x) feasible values of $\zeta(t)$

when $x = q(t) \in X$

Given: Convex monotone cost function,

$$c: \mathbb{R}_+^\ell \to \mathbb{R}_+$$

$$\underset{u \in \mathsf{U}(x)}{\arg\min} \, \tfrac{d^+}{dt} c(q(t)) = \underset{u \in \mathsf{U}(x)}{\arg\min} \langle \nabla c(x), Bu + \alpha \rangle$$

$$Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$$

Constraints: X_{\diamond} subset of \mathbb{R}^{ℓ}_{+} (lattice constraints, etc.)

 $\mathsf{U}_{\diamond}(x)$ feasible values of U(k)

when $x = Q(k) \in X_{\diamond}$

Given: Convex monotone cost function,

$$c \colon \mathbb{R}_+^\ell \to \mathbb{R}_+$$

$$Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$$

Constraints: X_{\diamond} subset of \mathbb{R}^{ℓ}_{+} (lattice constraints, etc.)

 $U_{\diamond}(x)$ feasible values of U(k)

when $x = Q(k) \in X_{\diamond}$

Given: Convex monotone cost function,

$$c \colon \mathbb{R}_+^\ell \to \mathbb{R}_+$$

Myopic policy:

$$\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min}\,\mathsf{E}[c(Q(k+1))\mid Q(k)=x,\ U(k)=u]$$

$$Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$$

Motivation: Average cost optimal policy is h-myopic, $h: \mathbb{R}_+^\ell \to \mathbb{R}_+$ is the relative value function,

$$h(x) = \inf_{U} \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta^*] dt$$

$$Q(k+1) - Q(k) = B(k+1)U(k) + A(k+1)$$

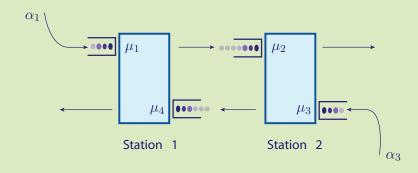
Motivation: Average cost optimal policy is h-myopic, $h: \mathbb{R}_+^\ell \to \mathbb{R}_+$ is the relative value function,

$$h(x) = \inf_{U} \int_0^\infty \mathsf{E}[c(Q(t;x)) - \eta^*] dt$$

Dynamic programming equation:

$$\min_{u \in \mathsf{U}_{\diamond}(x)} \, \mathsf{E}[h(Q(k+1)) \mid Q(k) = x, \ U(k) = u] \ = \ h(x) \, - \, c\,(x) \ + \, \eta^*$$

Fluid Model & Myopia



$$q(t) = x + Bz(t) + \alpha t, \qquad t \ge 0$$

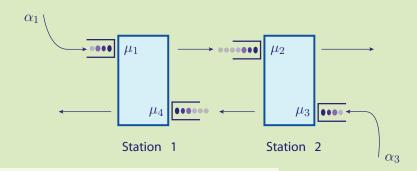
$$q(0) = x$$

Given: Convex monotone cost function,

$$c \colon \mathbb{R}_+^\ell \to \mathbb{R}_+$$

Myopic policy for fluid model is stabilizing:

$$q(t) = 0$$
 $t \geq T_0$

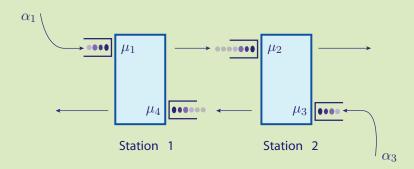


Myopic policy may or may not be stabilizing

Example: Two station model above with linear cost,

$$c(x) = x_1 + x_2 + x_3 + x_4$$

Myopic policy for CRW model: Priority to exit buffers

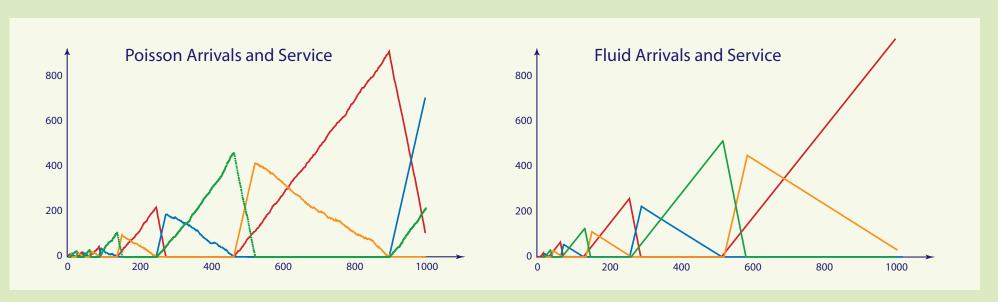


Myopic policy may or may not be stabilizing

Example: Two station model above with linear cost,

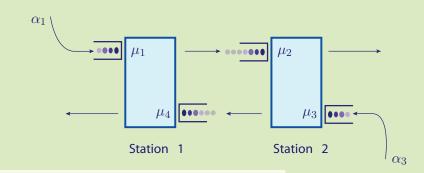
$$c(x) = x_1 + x_2 + x_3 + x_4$$

Myopic policy for CRW model: Priority to exit buffers



Periodic starvation creates instability

Quadratic Cost



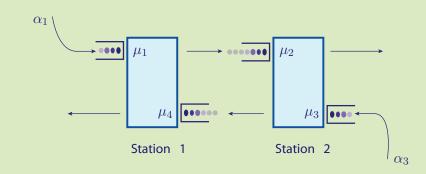
Myopic policy stabilizing for diagonal quadratic

Example: Two station model above with,

$$c(x) = \frac{1}{2}[x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

Myopic policy: Approximated by linear switching curves

Quadratic Cost



Myopic policy stabilizing for diagonal quadratic

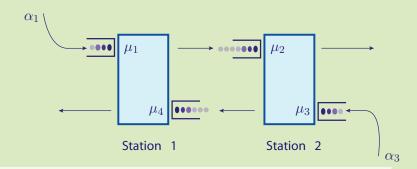
Example: Two station model above with,

$$c(x) = \frac{1}{2}[x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

Myopic policy: Approximated by linear switching curves

Condition (V3) holds with Lyapunov function V=c For positive constants ε and $\bar{\eta}$

$$PV(x) := E[V(Q(k+1))|Q(k) = x] \le V(x) - \varepsilon ||x|| + \bar{\eta}$$

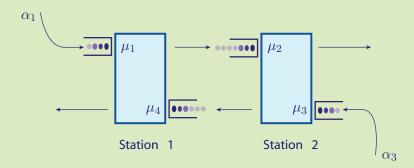


Tassiulas considers myopic policy for fluid model

$$\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min} \langle \nabla c(x), Bu + \alpha \rangle$$

subject to lattice constraints

where
$$c(x) = \frac{1}{2} x^{\mathrm{\scriptscriptstyle T}} D x$$
 , $D = \mathrm{diag} \left(d_1, \ldots, d_\ell \right)$



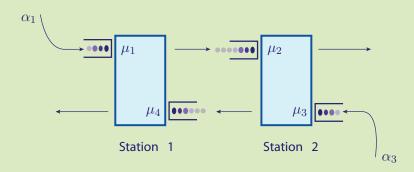
Tassiulas considers myopic policy for fluid model

$$\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min} \langle \nabla c(x), Bu + \alpha \rangle$$
 subject to lattice constraints

Obtains negative drift: For non-zero x,

$$\langle \nabla c(x), Bu + \alpha \rangle \le -\varepsilon ||x||$$

Implies (V3) for MaxWeight policy



Tassiulas considers myopic policy for fluid model

$$\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min} \langle \nabla c(x), Bu + \alpha \rangle$$
 subject to lattice constraints

Obtains negative drift: For non-zero x,

$$\langle \nabla c(x), Bu + \alpha \rangle \le -\varepsilon ||x||$$

Implies (V3) for MaxWeight policy

Implies (V3) for myopic policy

since myopic has minimum drift

Questions Since 1996

$$\lim_{\|x\| \to \infty} \left[\frac{J(x)}{h(x)} \right] = 1$$

Value functions for fluid and stochastic models:

Quadratic growth for linear cost with similar asymptotes;

Policies are similar for large state-values

Questions Since 1996

$$\lim_{\|x\| \to \infty} \left[\frac{J(x)}{h(x)} \right] = 1$$

Value functions for fluid and stochastic models:

Quadratic growth for linear cost with similar asymptotes;

Policies are similar for large state-values

- What is the gap between policies?
- What is the gap between value functions?
- How to translate policy for fluid model to cope with volatility?
- Connections with heavy traffic theory?

Questions Since 1996

$$\lim_{\|x\| \to \infty} \left[\frac{J(x)}{h(x)} \right] = 1$$

Value functions for fluid and stochastic models:

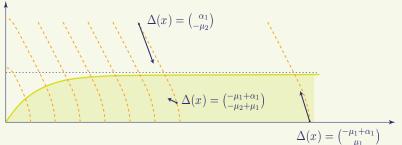
Quadratic growth for linear cost with similar asymptotes;

Policies are similar for large state-values

- What is the gap between policies?
- What is the gap between value functions?
- How to translate policy for fluid model to cope with volatility?
- Connections with heavy traffic theory?

Many positive answers in new monograph, as well as new applications for value function approximation

Today's lecture focuses on third and fourth topics



IIh-MaxWeight Policies

II	I St	tability & Performance	31
8	Fost	ter-Lyapunov Techniques	31
	8.1	Lyapunov functions	. 32
	8.4	MaxWeight	. 34
	8.5	MaxWeight and the average-cost optimality equation	. 34

Geometric explanation

Define drift vector field (for given policy)

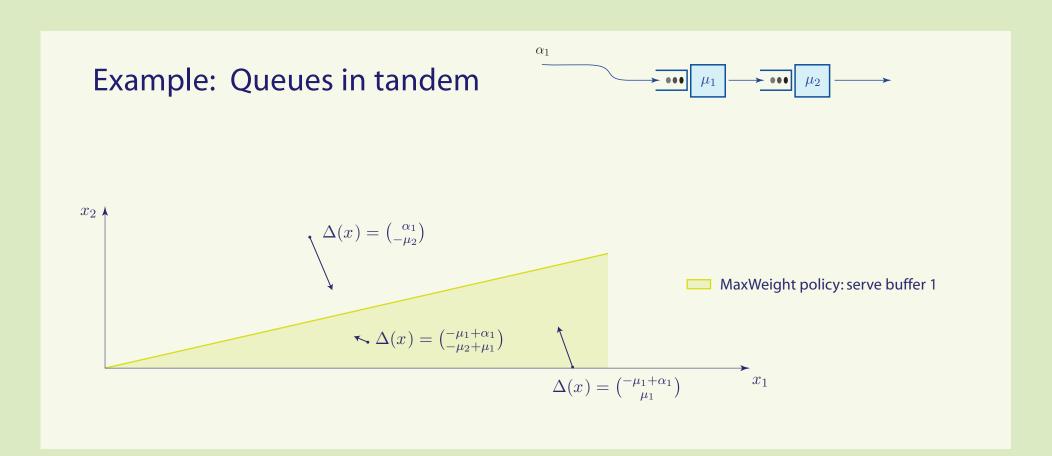
$$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x] = Bu + \alpha$$

MaxWeight policy:

$$\underset{u \in \mathsf{U}_{\diamond}(x)}{\arg\min} \langle \nabla c(x), \, \Delta(x) \, \rangle$$

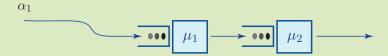
with c diagonal quadratic

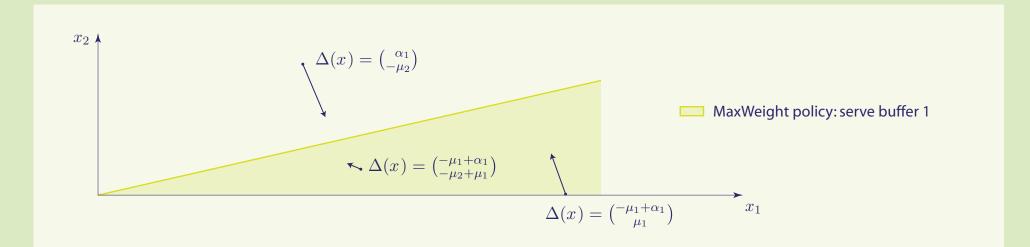
$$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x]$$



$$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x]$$

Example: Queues in tandem



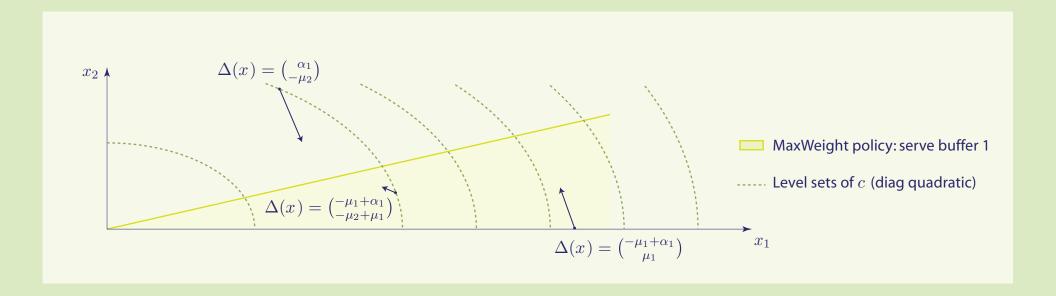


Key observation: Boundaries of the state space are repelling

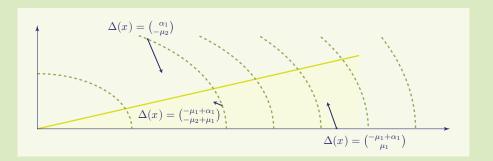
$$\Delta(x) = \mathsf{E}[Q(k+1) - Q(k) \mid Q(k) = x]$$

Example: Queues in tandem





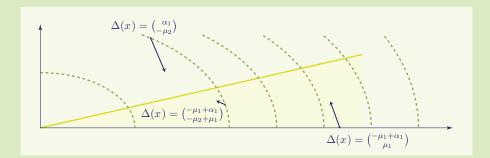
Key observation: Boundaries of the state space are repelling Consequence of vanishing partial derivatives on boundary



Given: Convex monotone function *h*

Boundary conditions

$$\frac{\partial}{\partial x_j}h(x) = 0$$
 when $x_j = 0$.



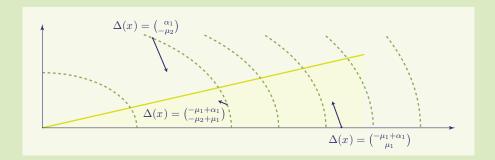
Given: Convex monotone function *h*

Boundary conditions

$$\frac{\partial}{\partial x_j}h(x) = 0$$
 when $x_j = 0$.

Economic interpretation:

Marginal disutility vanishes for vanishingly small inventory



Given: Convex monotone function *h*

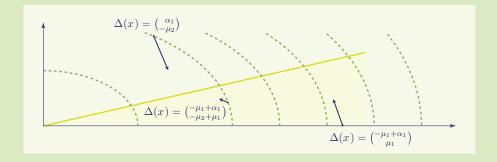
Boundary conditions

$$\frac{\partial}{\partial x_j}h(x) = 0$$
 when $x_j = 0$.

Economic interpretation:

Marginal disutility vanishes for vanishingly small inventory

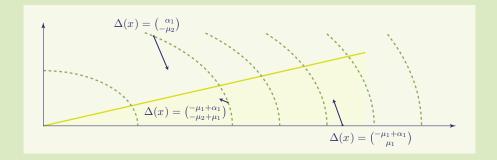
Condition rarely holds, but we can fix that ...



Given: Convex monotone function h_0 (perhaps violating ∂ condition)

Introduce perturbation: For fixed $\theta \geq 1$ and any $x \in \mathbb{R}_+^{\ell}$

$$\tilde{x}_i := x_i + \theta(e^{-x_i/\theta} - 1), \text{ and } \tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_\ell)^T \in \mathbb{R}_+^\ell$$



Given: Convex monotone function h_0 (perhaps violating ∂ condition)

Introduce perturbation: For fixed $\theta \geq 1$ and any $x \in \mathbb{R}_+^{\ell}$

$$\tilde{x}_i := x_i + \theta(e^{-x_i/\theta} - 1), \text{ and } \tilde{x} = (\tilde{x}_1, \dots, \tilde{x}_\ell)^T \in \mathbb{R}_+^\ell$$

Perturbed function:

$$h(x) = h_0(\tilde{x}), \qquad x \in \mathbb{R}_+^{\ell}$$

Convex, monotone, and boundary conditions are satisfied

α_1 μ_1 μ_2

Perturbed linear function

 h_0 linear: *never* satisfies ∂ condition

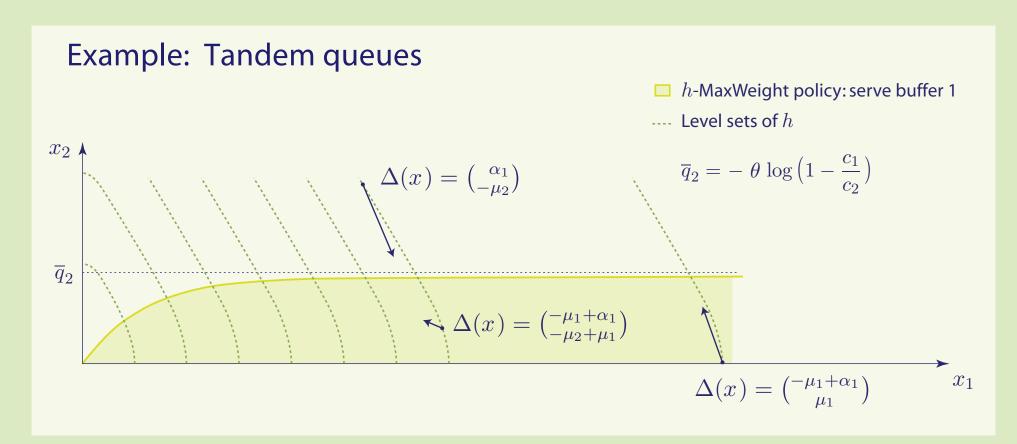
h-myopic and h-MaxWeight polices stabilizing provided $\theta \geq 1$ is sufficiently large

Perturbed linear function

 h_0 linear: never satisfies ∂ condition

h-myopic and h-MaxWeight polices stabilizing

provided $\theta \geq 1$ is sufficiently large



h-MaxWeight Policy

Perturbed value function

$$h_0$$
 minimal fluid value function, $J(x) = \inf \int_0^\infty c(q(t;x)) dt$

h-myopic and h-MaxWeight polices stabilizing provided $\theta \geq 1$ is sufficiently large

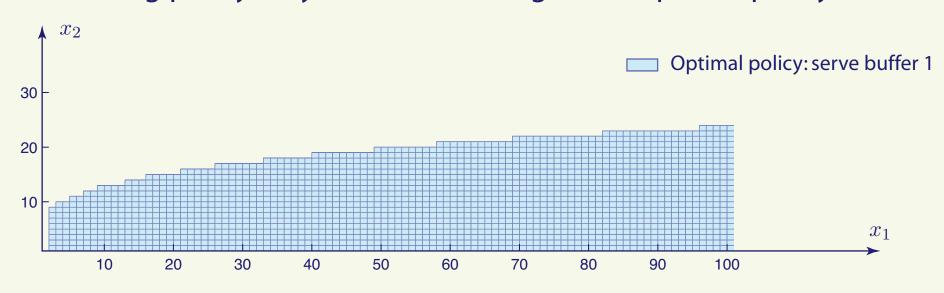
h-MaxWeight Policy

Perturbed value function

$$h_0$$
 minimal fluid value function, $J(x) = \inf \int_0^\infty c(q(t;x)) dt$

h-myopic and h-MaxWeight polices stabilizing provided $\theta \geq 1$ is sufficiently large

Resulting policy very similar to average-cost optimal policy:

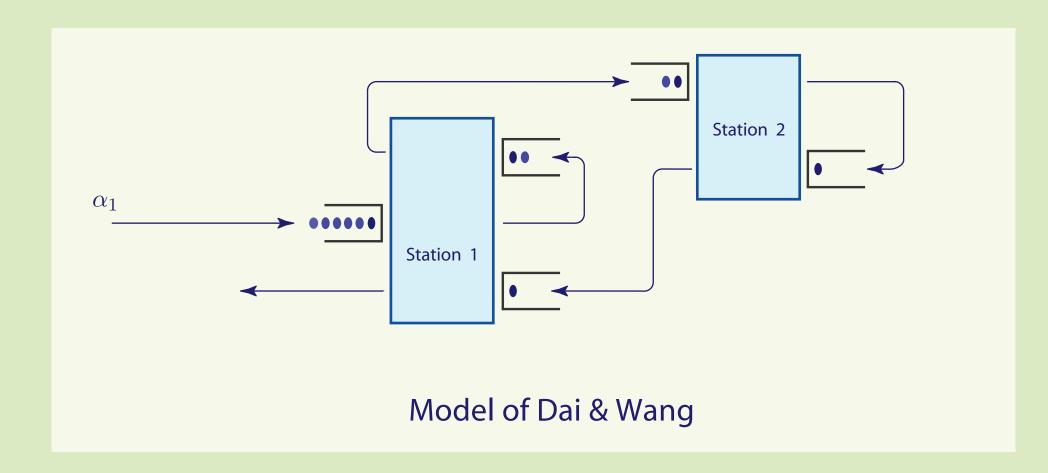


	Control Techniques for Complex Networks			Draft copy April 22 2007						7	
II	Wo	rkload								158	
5	Wor	kload & Scheduling								159	
	5.1	Single server queue								. 160	
	5.2	Workload for the CRW scheduling model								. 163	
	5.3	Relaxations for the fluid model								. 167	

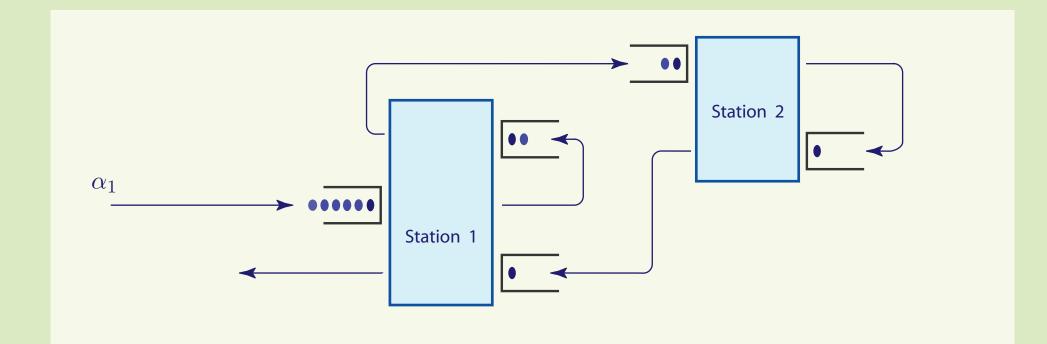
III Heavy Traffic

II	I Stability & Performance	318
9	Optimization	374
10	ODE methods	436
	10.5 Safety stocks and trajectory tracking	

Single example for sake of illustration:

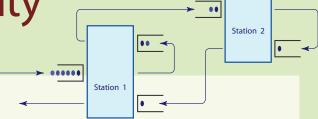


Single example for sake of illustration:



Assume: Homogeneous model

Service rate at Station i is μ_i



Homogeneous CRW model:

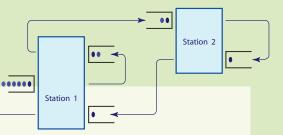
$$Q_1(k+1) - Q_1(k) = -S_1(k+1)U_1(k) + A_1(k+1)$$

$$Q_2(k+1) - Q_2(k) = -S_1(k+1)U_2(k) + S_1(k+1)U_1(k)$$

$$Q_3(k+1) - Q_3(k) = -S_2(k+1)U_3(k) + S_2(k+1)U_2(k)$$

$$Q_4(k+1) - Q_4(k) = -S_2(k+1)U_4(k) + S_2(k+1)U_3(k)$$

$$Q_5(k+1) - Q_5(k) = -S_1(k+1)U_5(k) + S_2(k+1)U_4(k)$$



Homogeneous CRW model:

$$Q_1(k+1) - Q_1(k) = -S_1(k+1)U_1(k) + A_1(k+1)$$

$$Q_2(k+1) - Q_2(k) = -S_1(k+1)U_2(k) + S_1(k+1)U_1(k)$$

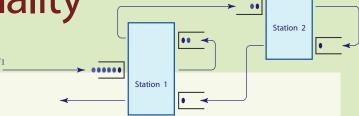
$$Q_3(k+1) - Q_3(k) = -S_2(k+1)U_3(k) + S_2(k+1)U_2(k)$$

$$Q_4(k+1) - Q_4(k) = -S_2(k+1)U_4(k) + S_2(k+1)U_3(k)$$

$$Q_5(k+1) - Q_5(k) = -S_1(k+1)U_5(k) + S_2(k+1)U_4(k)$$

Constituency constraints: $U_i(k) \in \{0,1\}$

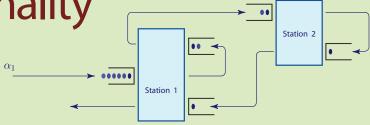
$$U_1(k) + U_2(k) + U_5(k) \le 1$$
 $U_3(k) + U_4(k) \le 1$



Workload (units of inventory)

$$Y_1(k) = 3Q_1(k) + 2Q_2(k) + Q_3(k) + Q_4(k) + Q_5(k)$$

$$Y_2(k) = 2(Q_1(k) + Q_2(k) + Q_3(k)) + Q_4(k)$$



Workload (units of inventory)

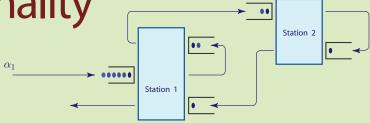
$$Y_1(k) = 3Q_1(k) + 2Q_2(k) + Q_3(k) + Q_4(k) + Q_5(k)$$

$$Y_2(k) = 2(Q_1(k) + Q_2(k) + Q_3(k)) + Q_4(k)$$

Idleness processes:

$$t_1(k) = 1 - (U_1(k) + U_2(k) + U_5(k))$$

$$t_2(k) = 1 - (U_3(k) + U_4(k))$$



Workload (units of inventory)

$$Y_1(k) = 3Q_1(k) + 2Q_2(k) + Q_3(k) + Q_4(k) + Q_5(k)$$

$$Y_2(k) = 2(Q_1(k) + Q_2(k) + Q_3(k)) + Q_4(k)$$

Idleness processes:

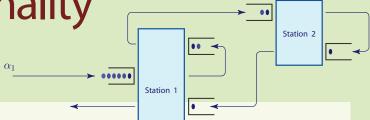
$$\iota_1(k) = 1 - (U_1(k) + U_2(k) + U_5(k))$$

$$\iota_2(k) = 1 - (U_3(k) + U_4(k))$$

Dynamics:

$$Y_1(k+1) - Y_1(k) = -S_1(k+1) + 3A_1(k+1) + S_1(k+1)\iota_1(k)$$

$$Y_2(k+1) - Y_2(k) = -S_2(k+1) + 2A_1(k+1) + S_2(k+1)\iota_2(k)$$

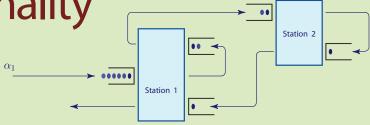


Workload Relaxation of N. Laws

$$Y_1(k+1) - Y_1(k) = -S_1(k+1) + 3A_1(k+1) + S_1(k+1)\iota_1(k)$$

with constraints on idleness process relaxed,

$$\iota_1(k) \in \{0, 1, 2, \dots\}$$



Workload Relaxation of N. Laws

$$Y_1(k+1) - Y_1(k) = -S_1(k+1) + 3A_1(k+1) + S_1(k+1)\iota_1(k)$$

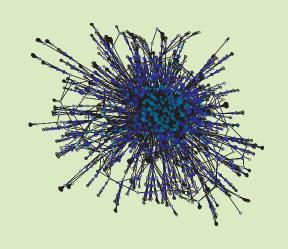
with constraints on idleness process relaxed,

$$\iota_1(k) \in \{0, 1, 2, \dots\}$$

Optimization based on the effective cost,

$$\overline{c}(y)=\min \quad c(x)$$
 s.t. $3x_1+2x_2+x_3+x_4+x_5=y$ $x\in\mathbb{Z}_+^5$ (+ buffer constraints)

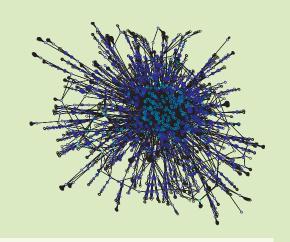
- Laws 90
- Kelly & Laws 93
- Harrison, Kushner, Reiman, Williams, Dai, Bramson, ...



Optimal policy is non-idling for one-dimensional relaxation

Dynamic programing equation solved via *Pollaczek-Khintchine* formula

Heavy traffic assumptions

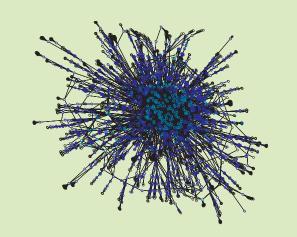


Load is unity for nominal model
Single bottleneck to define relaxation
Cost is linear, and effective cost has a unique optimizer
Model sequence:

$$A^{(n)}(k) = \begin{cases} A(k) & \text{with probability } 1 - n^{-1} \\ 0 & \text{with probability } n^{-1} \end{cases}$$

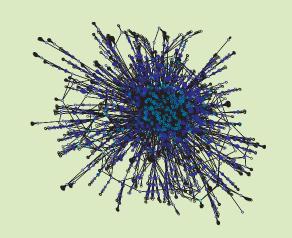
Load less than unity for each *n*

$$h_0(x) = \hat{h}^*(y) + \frac{b}{2} \left(c(x) - \overline{c}(y) \right)^2$$



h-MaxWeight policy asymptotically optimal, with logarithmic regret

$$h_0(x) = \hat{h}^*(y) + \frac{b}{2} \left(c(x) - \overline{c}(y) \right)^2$$

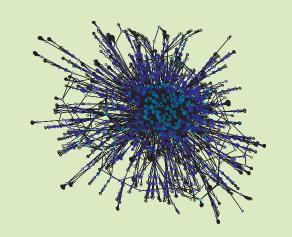


h-MaxWeight policy asymptotically optimal, with logarithmic regret

 $\hat{\eta}^* = O(n)$ optimal average cost for relaxation

 η average cost under h-MW policy

$$h_0(x) = \hat{h}^*(y) + \frac{b}{2} \left(c(x) - \overline{c}(y) \right)^2$$



h-MaxWeight policy asymptotically optimal, with logarithmic regret

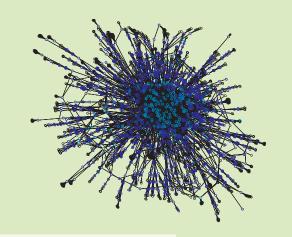
 $\hat{\eta}^* = O(n)$ optimal average cost for relaxation

 η average cost under h-MW policy

$$\hat{\eta}^* \le \eta \le \hat{\eta}^* + O(\log(n))$$

Co	Control Techniques for Complex Networks Draft copy April 22 2007						
Ш	Stability & Performance	318					
10	ODE methods 10.5 Safety stocks and trajectory tracking	436 462					
	10.6 Fluid-scale asymptotic optimality						
11	Simulation & Learning	485					
	11.4 Control variates and shadow functions	516					
	11.6 Notes	532					
	11.7 Exercises	nclusions					
A	Markov Models A.1 Every process is (almost) Markov A.2 Generators and value functions A.3 Equilibrium equations A.4 Criteria for stability A.5 Ergodic theorems and coupling A.6 Converse theorems						
Lis	t of Figures	572					

Conclusions

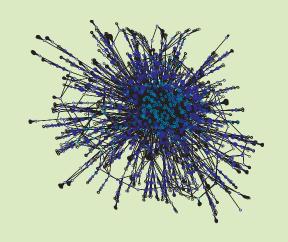


h-MaxWeight policy stabilizing under very general conds.

General approach to policy translation. Resulting policy mirrors optimal policy in examples

Asymptotically optimal, with logarithmic regret for model with single bottleneck

Conclusions



h-MaxWeight policy stabilizing under very general conds.

General approach to policy translation. Resulting policy mirrors optimal policy in examples

Asymptotically optimal, with logarithmic regret for model with single bottleneck

Future work

Models with multiple bottlenecks?

On-line learning for policy improvement?

II	Workload		Draft copy April 22 200
5	Refere	Performance	318
	5.3 Refuxations for tile fluid model		436
Contro		iting in queueing networks. PhD thesis,	
I Mod	Cambridge Universit	cy, Cambridge, UK, 1990.	485
4 Sched			
4.1	L. Tassiulas. Adaptive	back-pressure congestion control based on	516
4.2 4.3	local information. 40	100	534
III Sta 9 Optin 9.4 9.6	•	hremides. Stability properties of constrained d scheduling policies for maximum throughput in orks. 1992.	34 145
	S. P. Meyn. Sequencing Part II: Workload relax	g and routing in multiclass queueing networks. kations. 2003.	148
		nd asymptotic optimality of generalized Submitted for publication, 2006.	318 319 538
II	Stability & Performance	s i m. A.I. Livervinocess Is (almost) Markov	538
9 10	S. P. Meyn. <i>Control ted</i> Cambridge Universit	chniques for complex networks. To appear, cy Press, 2007.	540 543 552
	10.5 Safety stocks and trajectory tracking 10.6 Fluid-scale asymptotic optimality	ALDErgo@02neorems and coupling	. 560