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Abstract

The methods presented in this work provide a potential tool for characterizing contaminant source

zones in terms of mass flux. The problem was conceptualized by considering contaminant transport

through a vertical bflux planeQ located between a source zone and a downgradient region where

contaminant concentrations were measured. The goal was to develop a robust method capable of

providing a statement of the magnitude and uncertainty associated with estimated contaminant mass

flux values.

In order to estimate the magnitude and transverse spatial distribution of mass flux through a

plane, the problem was considered in an optimization framework. Two numerical optimization

techniques were applied, simulated annealing (SA) and minimum relative entropy (MRE). The

capabilities of the flux plane model and the numerical solution techniques were evaluated using data

from a numerically generated test problem and a nonreactive tracer experiment performed in a three-

dimensional aquifer model. Results demonstrate that SA is more robust and converges more quickly

than MRE. However, SA is not capable of providing an estimate of the uncertainty associated with

the simulated flux values. In contrast, MRE is not as robust as SA, but once in the neighborhood of

the optimal solution, it is quite effective as a tool for inferring mass flux probability density

functions, expected flux values, and confidence limits.
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A hybrid (SA-MRE) solution technique was developed in order to take advantage of the robust

solution capabilities of SA and the uncertainty estimation capabilities of MRE. The coupled

technique provided probability density functions and confidence intervals that would not have been

available from an independent SA algorithm and they were obtained more efficiently than if

provided by an independent MRE algorithm.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Groundwater contamination is a worldwide problem and as with any problem of this

magnitude the assessment of risk and the appropriate methods for remediation are a

constant topic of investigation. However, before risk and remediation can be considered,

the task of primary importance is to accurately characterize the source of contamination.

The process of source characterization represents solution of an inverse problem and is

usually considered within an optimization framework (Gorelick et al., 1983). When posing

such a problem, one must consider how to represent or bcharacterizeQ the source. A typical

practice is to characterize the source by estimating the location and magnitude of

contaminant mass within a system. In this construct, risk assessments and remedial actions

are based upon estimated contaminant concentrations.

Another option is to characterize the source in terms of mass flux, where flux is a term

used to quantify the mass of water and or contaminants flowing through a specified control

plane (cross-sectional area) during a given period of time. Based upon this general

definition, the units associated with mass flux, m, can be determined as:

m ¼ mass

unit areadtime
¼ M

L2dT

� �
ð1Þ

where the terms M, L, and T represent the base units of mass, length, and time,

respectively. In this framework, risk assessments and remedial actions can be based upon

contaminant mass flux. The benefits of flux-based characterization are discussed by Rao et

al. (2001).

Regardless of the basis for contaminant source characterization (concentration based

or flux based), various optimization methodologies have been applied to the inverse

source characterization problem. Gorelick et al. (1983) used least squares regression and

linear programming to estimate the magnitude and location of contaminant sources and

applied the methods to two hypothetical problems: a steady state leaky pipe problem and

a transient contaminant source problem. For the steady state problem, source magnitude

was defined as the volumetric flow from each leak in the pipe measured in liters per day

[L3 /T], while for the transient case source magnitude was quantified as the mass-loading

rate in grams per second [M /T]. Wagner (1992), Aral and Guan (1996), Sidauruk et al.

(1998), and Mahar and Datta (2000) and Sciortino et al. (2000, 2002) also presented

methods for estimating source magnitude and location. Wagner (1992) used the method



M. Newman et al. / Journal of Contaminant Hydrology 81 (2005) 34–6236
of non-linear maximum likelihood estimation and quantified the source magnitude based

upon the mass-loading rate [M /T]. Aral and Guan (1996) applied genetic algorithms to

estimate source magnitude based upon the contaminant source concentration [M /L3].

Sidauruk et al. (1998) utilized correlation coefficient optimization and applied the method

to two-dimensional test problems: one involving an instantaneous point source and the

other a continuous point source with the source magnitude being quantified as the mass

per unit depth and mass per unit depth per time (2-D mass flux), respectively. Mahar and

Datta (2000) applied an embedding technique, which directly incorporated the governing

equations for flow and transport into the optimization model. They identified the source

magnitude based upon the mass-loading rate [M /T]. Sciortino et al. (2000) utilized the

Levenberg–Marquardt method to inversely estimate the location and rectangular

dimensions of a dense nonaqueous phase liquid (DNAPL) pool located at the base of

an aquifer under steady flow conditions. They observed that the inverse model was

sensitive to changes in the dispersion coefficients. In later work, Sciortino et al. (2002)

applied a genetic algorithm in order to optimize monitoring well networks by minimizing

parameter uncertainty along with installation and sampling costs.

Each of these studies conceptualized the source location problem based upon a

horizontal discretization of the system and attempted to locate sources by choosing from a

discrete set of possible source locations of which the actual source location was a subset.

The study that considered the greatest variability of possible solutions was Sciortino et al.

(2000, 2002). By considering the location and rectangular dimensions of the contaminant

source (DNAPL pool) their model allowed for greater flexibility in characterizing the

contaminant source, and by incorporating a random search technique (genetic algorithm)

they avoided the limitations of gradient-based optimization methods.

Along with source magnitude and location, Wagner (1992) and Sidauruk et al. (1998)

considered source characterization in terms of the transient bdisposal historyQ. Others have
also considered the release history and plume evolution problem. Skaggs and Kabala

(1994) used Tikhonov regularization to estimate the release history of a simulated one-

dimensional contaminant plume. Woodbury and Ulrych (1996) used minimum relative

entropy (MRE) to reconstruct plume release and evolution history and applied this method

to various one-dimensional test problems including a comparison to Skaggs and Kabala

(1994). More recently Woodbury et al. (1998) extended the MRE method to recover the

source-release history of a three-dimensional plume produced from a single plane source

located at the upgradient boundary of the aquifer system. Atmadja and Bagtzoglou (2001)

utilized a hybrid marching-jury backward beam equation and also applied their method to

the Skaggs and Kabala (1994) test problem.

McLaughlin et al. (1993) presented a method for site characterization based upon

combining field observations with predictions from a stochastic groundwater model.

Although, not strictly a bsource characterizationQ approach, this study is included in this

review because it provides a concise discussion of the uncertainty associated with

contaminant plume characterization. Wagner (1992), Woodbury and Ulrych (1996), and

Woodbury et al. (1998) also evaluate the uncertainty associated with estimated source

characteristics.

All but three of the previously listed methods were applied solely to numerically

simulated test problems. Sciortino et al. (2000, 2002) applied their methods to a
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bench-scale dissolution experiment, McLaughlin et al. (1993) applied their methodol-

ogy to data obtained from a coal tar disposal site in upstate New York; and Woodbury

et al. (1998) presented a case study problem at the Gloucester Landfill in Ontario,

Canada.

Frind et al. (1999) performed a study specifically for the purpose of investigating the

processes involved in field-scale multi-component DNAPL dissolution. They developed

a concentration-based numerical model of the Borden emplaced source. The simulation

results showed that dissolution and mass transfer at the Borden site occur at or near

equilibrium conditions. The work of Frind et al. (1999) demonstrates the conventional

method of simulation used for considering contaminant source zones, and the

simulation results provide valuable insight into the dissolution process. One thing to

note, however, is the amount of prior information that is required for development of

the numerical model. In order to simulate the velocity field numerically, a prior

estimate of the flow field heterogeneities must exist. For Frind et al. (1999), the flow

field was estimated using information from two previous studies (Sudicky, 1989;

Woodbury and Sudicky, 1991).

The purpose of the work presented here, as with several of the previously mentioned

works, is to characterize contaminant source strength based upon observed contaminant

concentration data. The primary difference in this work, when compared to the previous

studies, is that here the problem is conceptualized in terms of a vertical flux plane, and

the goal is to estimate the spatial distribution and magnitude of contaminant mass flux

through the plane. When compared to the conventional method, the primary benefit of

the flux plane method is the minimal amount of initial information required for

application. In its current form, the flux plane method applies an analytical transfer

function, which requires minimal initial information. It is acknowledged that

incorporating a numerical solution rather than an analytical solution could expand the

applicability of the flux plane model. But development and implementation of a

numerical model requires a greater amount of prior information, and such information is

not always readily available. By reducing the amount of requisite information the flux

plane method provides a simple tool that can be used for preliminary assessment of a

contaminant site when very little information is typically known about the flow field and

source characteristics. For most preliminary site assessments, all that may be known is

the general direction of groundwater flow and the locations of observed downgradient

contaminant concentrations. It is specifically for cases such as this, where very little is

known, that the flux plane model can provide initial estimates for the total contaminant

mass being released from a contaminant source zone.

The other unique aspect of this work is the method of solution. A hybrid solution

technique was developed in order to take advantage of the robust solution capabilities of

simulated annealing (SA) and the uncertainty estimation capabilities of minimum relative

entropy (MRE). The coupled technique provides probability density functions and

confidence intervals that are not available from an independent SA algorithm, and they are

obtained more efficiently than if provided by an independent MRE algorithm. The

capabilities of the methods discussed in this paper were assessed through application to

both a numerical test problem and data obtained from laboratory aquifer model

experiments.



M. Newman et al. / Journal of Contaminant Hydrology 81 (2005) 34–6238
2. Flux plane model

2.1. Conceptual model

The flux plane conceptual model is shown in Fig. 1. It is assumed that groundwater

flow is horizontal and uniform, and that a source zone is continuously releasing

contaminants that are transported in the direction of the natural groundwater gradient

resulting in a dissolved phase plume. It is also assumed that contaminant concentrations

can be measured at multiple locations’ downgradient of the contaminant source zone, and

that a flux plane is located between the contaminant source zone and the downgradient

observation locations.

The conceptual model is represented numerically by dividing the flux plane into N

rectangular elements each having a flux component mn (Fig. 1). The total mass flux

through the plane is the sum of the N elemental fluxes, and the resulting concentration (Cj)

at location j, has a component contributed from each of the elemental fluxes mn.

Cj ¼
XN
n¼1

gjnmn ð2Þ

In Eq. (2) gjn is a transfer function relating the flux (mn) through element n, to the

concentration (Cj) at location j. Eq. (2) can be used to simulate downgradient

concentration values for comparison with observed values and is the forward statement

of the inverse problem to be solved.
Fig. 1. Flux plane conceptual model.
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2.2. Transfer function

With the general forward problem established in Eq. (2), the next step is to determine

the form of the transfer function gjn. For this study each of the N flux elements within the

flux plane were simulated as a continuous plane source. Domenico and Robbins (1985)

presented an analytical solution for three-dimensional transport from a single continuous

plane source by solving the equation for advective–dispersive transport in a homogeneous

aquifer. The Domenico and Robbins solution is shown below as modified for this

investigation.

C ¼ Co

8
erfc

x� vt

2 axvtð Þ

� �
erf

yþ b

2 ayx
� �1=2

" #
� erf

y� b

2 ayx
� �1=2

" #( )(
erf

zþ d

2 azxð Þ1=2

" #

� erf
z� d

2 azxð Þ1=2

" #)
ð3Þ

where erf and erfc represent the error function and complimentary error function

respectively. Assuming that the origin for the coordinate axes is located at the center of the

plane source, the coordinates x, y, z represent the location of the downgradient

concentration C (Fig. 2). The dimensions b and d represent the half-width and half-

height of the plane source. Co is the source concentration [M /L3], v is the pore water

velocity [L /T], t represents the elapsed time [T], and ax, ay, az represent the dispersivity
components along the x, y, and z-axes. The units for ax, ay, az are length [L].
(x,y,z)

(0
,0,

0)

x

y
z

b
b

d

d

C

Groundwater flow

Fig. 2. Schematic of continuous plane source.
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Given the analytical solution for three-dimensional transport from a continuous plane

source (Eq. (3)) and assuming steady state conditions:

As tYl;
x� vt

2 axvtð Þ1=2
Y�l; erfc �lð ÞY2 ð4Þ

a transfer function gjn relating the concentration at location j to flux intensity through

element n can be formulated as

gjn ¼
1

4qx
erf

ynVþ b

2 ayxnV
� �1=2

" #
� erf

ynV� b

2 ayxnV
� �1=2

" #( )(
erf

znVþ d

2 azxnVð Þ1=2

" #

� erf
znV� d

2 azxnVð Þ1=2

" #)
ð5Þ

where qx is the specific discharge [L /T] and xnV, ynV, znV are the relative coordinates defined
as

xnV ¼ xlocation j � xcentroid of element n

ynV ¼ ylocation j � ycentroid of element n

znV ¼ zlocation j � zcentroid of element n: ð6Þ

Inspection of Eq. (5) shows that the steady state assumption removes the longitudinal

dispersivity ax and velocity v from the transfer function. It should also be noted that there

is no retardation term in the transfer function Eq. (5). This indicates that once steady state

conditions are achieved the lateral and vertical extents of the plume are determined

primarily by the transverse dispersivities ay and az.

With a transfer function defined (Eq. (5)), Eq. (2) can be applied with the objective of

determining a set of elemental flux values, mn (n =1, 2,. . ., N), based upon observed

concentrations. As mentioned previously, the problem of source characterization is

typically solved within an optimization framework (Gorelick et al., 1983). The solution

methods applied in this study are discussed in the following section.
3. Numerical solution techniques: nonlinear optimization

Solution of the general problem stated in the previous section requires a nonlinear

optimization method capable of dealing with multiple variables. For this study two

optimization techniques were investigated, simulated annealing (SA) and minimum

relative entropy (MRE). SA was considered due to its robust search capabilities while

MRE was considered because of its ability to provide estimates for the probability density

function (pdf) of simulated fluxes. The intent was to evaluate the independent capabilities

of each method and then consider a hybrid method incorporating the strengths of each.



M. Newman et al. / Journal of Contaminant Hydrology 81 (2005) 34–62 41
3.1. Simulated annealing

Simulated annealing is a random search technique. There are a wide variety of random

search techniques documented in the literature: simulated annealing, evolutionary

algorithms, and neural networks to name a few (Duan et al., 1994; Rogers et al., 1995;

Zheng and Wang, 1996; Wang and Zheng, 1998). Each method has its own merits and

pitfalls but the above referenced methods all have two similarities: they require only

objective function information to determine convergence, so derivative calculations are not

required; and they implement probabilistic transition rules, which allow them to avoid

local minima in an effort to move towards a global minimum. Typical drawbacks of

random search techniques are the computational cost and the fact that although

theoretically they should locate a bglobalQ optimum provided adequate time, the reliability

of the final estimates are not always readily verified.

The method of simulated annealing (SA), introduced by Kirkpatrick et al. (1983), is an

extension of the Metropolis Algorithm (Metropolis et al., 1953), and is based on an

analogy with thermodynamics, specifically with the way that metals cool or anneal. The

Metropolis algorithm simulates thermal equilibrium at a constant temperature, while SA is

a series of Metropolis algorithms evaluated through a sequence of decreasing temperatures.

When applying the thermodynamic analogy to a minimization problem, the energy E of

the system for a given temperature represents the objective function value, while the

temperature T is an algorithm control parameter which dictates the scale of perturbations

and the probability of accepting uphill moves (perturbations that result in increased

objective function values). The annealing procedure starts with the system in an initial

state that is randomly perturbed. If the resulting change in energy DE is negative (the

objective function is reduced) then the process is continued in the new state. If the

difference in energy is positive (the objective function is increased), the probability of

accepting the new state is determined as

P ¼ exp � DE

T

� �
: ð7Þ

A general SA algorithm is shown in Fig. 3. Laarhoven and Aarts (1987) and Press et al.

(1992) provide excellent discussions of the Metropolis algorithm and simulated annealing.

For this study, a method of simulated annealing for application with continuous random

variables that incorporates the downhill simplex method (Nelder and Mead, 1965) was

adapted from Press et al. (1992).

The SA process requires that an annealing schedule be established which controls how

and when T is lowered. At higher temperatures, the algorithm creates larger perturbations,

and the probability of accepting a move in the direction of higher energy (increased

objective function) is greater. As the temperature decreases, the scale of the perturbations

decreases, and the probability of accepting moves in the direction of higher energy is

reduced. In terms of optimization, this means that at higher temperatures the algorithm is

more active—it searches a larger portion of the solution space and is more capable of

moving out of local minima. As the temperature decreases the algorithm activity

decreases—the search is refined to smaller and smaller portions of the solution space, and

the ability to move out of local minima is reduced.
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Input initial solution
Evaluate objective function, Eo

Acceptance

∆E < 0, accept new solution

∆E 0, accept with probability 

Convergence
Is convergence of objective function
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End
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Input initial temperature, To

Perturb solution
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∆
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Adjust temperature
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Fig. 3. General simulated annealing (SA) algorithm.
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It should be noted that annealing schedules are typically problem specific. An annealing

schedule that works well for one system may not be as efficient for another. Press et al.

(1992) discuss some possible annealing schedule strategies. For the algorithm applied in

this study, the annealing schedule is input as a starting temperature and the maximum

number of perturbations to be performed at each temperature increment. As the annealing

algorithm is run, the best ever solution (corresponding to the smallest objective function

value) is stored for reference along with the N +1 previous solutions, where N is the

number of unknown variables. The temperature is incrementally decreased by 20% each

time the perturbation limit is reached or when all of the N +1 solutions differ by the

specified convergence criteria. The annealing process continues until the temperature is
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reduced to zero (0.00). For this study, application of SA was based upon minimizing the

objective function f represented as the sum of the squared differences between observed

and simulated concentration values. The problem statement can be summarized as:

minimize f ¼
XM
j¼1

Cobs;j �
XN
n¼1

gjnmn

 !2

ð8Þ

subject to mnzL

mnVU

where M is the number of observations, N is the number of flux elements, Cobs, j is the

observed concentration value at location j, and
PN

n¼1 gjnmn represents the simulated

concentration value at location j (Eq. (2)). L and U represent the lower and upper limits

of flux intensity. How values of L and U were assigned for this study is discussed in

Section 4.

3.2. Minimum relative entropy

MRE is a gradient-based optimization technique capable of using observation data to

infer probability density functions and expected values for unknown model variables. As

the term implies, gradient-based optimization techniques are dependent upon calculating

the gradient (derivative) of the objective function. Typically, the gradient is used to

determine the direction to search for an optimal value. By incorporating gradient

calculations, the resulting algorithms are usually very efficient at finding a local minimum

when the gradient is steep. But, for cases where the minimum exists in an area with a

shallow gradient or where there are numerous local minima, gradient-based methods often

have problems converging. Gradient-based methods are usually most efficient once in the

general neighborhood of the global optimum.

The term minimal relative entropy is used because the procedure is based upon

minimizing the entropy between an unknown pdf and some prior estimate of the pdf. The

application of MRE to solve a general linear inverse problem was presented by Woodbury

and Ulrych (1996) and was based upon the work of Shore and Johnson (1981). With the

application of MRE, portions of the work presented here are an extension of Woodbury

and Ulrych (1996) and Woodbury et al. (1998).

Using the notation ofWoodbury andUlrych (1993), x is anN-dimensional random vector

representing one possible state of a system of interest. Next, it is assumed that q+(x) is the

unknown multivariate probability density function (pdf) of x. When working with

continuous random variables, the exact or btrueQ pdf q+(x) cannot be directly calculated.

However, a posterior estimate q(x) for the true pdf q+(x) can be established. Within an

optimization framework the premise is to minimize the difference between a model

simulated (posterior) estimate q(x) and a prior estimate p(x) inferred from observation data.

As with all optimization problems, in order to minimize the difference between

observed and simulated values, an efficient method for quantifying the difference has to be

established. There are numerous mathematical expressions used to represent the difference

between two quantities of interest, one of the simplest being the sum of the squared
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differences (which is applied in the SA algorithm). The choice of measure for representing

the difference is typically based upon the type of data and the desired result. Relative

entropy is a unique measure for comparing observed and simulated values, because it

considers the relative uncertainty (Kapur and Kesavan, 1992).

Entropy is a term from the study of thermodynamics that is used to indicate the disorder

or randomness of a system. Typically, the symbols S and H are used to represent entropy

and enthalpy, respectively. However, for the discussion of relative entropy (or cross-

entropy) Shore and Johnson (1981) and Woodbury and Ulrych (1993, 1996, 1998) have

consistently defined relative entropy using the symbol H. For the sake of continuity, the

same terminology has been applied in this paper.

When applied to optimization, entropy is a measure of the uncertainty involved with the

random variables. By minimizing the relative entropy between two pdfs it is assumed that

the uncertainty between the pdfs is also reduced (Kapur and Kesavan, 1992). The standard

relative entropy equation in terms of q and p is

H q; pð Þ ¼
Z

q xð Þln q xð Þ
p xð Þ

� �
dx ð9Þ

where H( q,p) is read as, the entropy of q relative to p. The minimum relative entropy

construct leads to a problem statement that differs from that of simulated annealing. In

both cases the goal is to boptimizeQ the contaminant mass flux distribution and magnitude

at the flux plane. However, for SA the problem statement is based upon minimizing the

sum of the squared differences between observed and simulated values. For MRE the

problem statement is represented as

Minimize

Z
q xð Þln q xð Þ

p xð Þ

� �
dx ð10Þ

such that

Z
q xð Þdx ¼ 1 ð11Þ

and

Z
fj xð Þq xð Þdx ¼ f¯j; j ¼ 1; 2; . . . ;M ð12Þ

where Eq. (11) represents the unity constraint inherent in the definition of a pdf and Eq.

(12) represents the expected value constraint. The expected value constraint is developed

upon the general relationship for determining the expected value of an arbitrary function,

fj(x). It is assumed that fj(x) represents a measurable quantity, f̄j, which represents the

observed (mean) value at location j and M is the total number of observations.

The MRE formulation can be solved for the posterior estimate of the pdf (Woodbury

and Ulrych, 1993)

q xð Þ ¼ p xð Þexp � 1� l �
XM
j¼1

kjfj xð Þ
" #

ð13Þ

where l and kj are Lagrange multipliers. This estimate of the pdf is one of the desirable

features of the method of minimum relative entropy. Up to this point, the development has
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been in terms of a general variable x. Now, consider a specific set of model variables m. In

this case m represents the set of n elemental flux values. To complete the inverse problem

the posterior estimate of the pdf q(m) must be used to calculate expected elemental flux

values. A method for determining the expected values that is directly applicable to the

conceptual problem presented in this paper is that of linear inversion as presented by

Woodbury and Ulrych (1996).

Following the linear inversion procedure, the general value for a single observation at

point j is (Woodbury and Ulrych, 1996)

dj ¼
XN
n¼1

gjnmn ð14Þ

where dj represents the observed value at location j, mn is the model simulated value for

the nth flux plane element, gjn is a transfer function relating dj to mn, j is the index for the

number of observations M ( j=1, 2, . . ., M), and n is the index for the number of flux

elements N (n =1, 2, . . ., N).

Following Woodbury and Ulrych (1996), we can define q(m) as the posterior estimate

for the pdf of m:Z
M

q mð Þ
XN
n¼1

gjnmn

" #
m ¼ d̄j ð15Þ

Eq. (15) represents the expected or mean observed value d̄j in terms of the unknown

elemental flux values m, the posterior estimate of the pdf q(m), and the transfer

functions g.

In order to solve the optimization problem, a set (or vector) of N initial model values S

must be established, where each Sn is the corresponding prior estimate of mn. The

resulting expression for Sn is shown below (Woodbury and Ulrych, 1993).

Sn ¼
exp � bnUð ÞbnU þ exp � bnUð Þ � 1

bn exp � bnUð Þ � 1ð Þ ð16Þ

where bn is a Lagrange multiplier and U is the elemental flux upper limit U.

Applying the prior estimates within the MRE framework, the posterior estimate for the

pdf of each individual model mn can be represented as (Woodbury and Ulrych, 1996)

q mnð Þ ¼ � an

exp � anUð Þ � 1
exp � mnan½ � ð17Þ

where an is defined as

an ¼ bn þ
XM
j¼1

kjgjn ð18Þ

The expected value m�n of mn can then be shown as:

m�n ¼
exp � anUð ÞanU þ exp � anUð Þ � 1

an exp � anUð Þ � 1ð Þ ð19Þ
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and Eq. (14) can be rewritten as,

d
�

j ¼
XN
n¼1

gjnm
�

n ð20Þ

Eq. (20) represents the expected (mean) value of the jth observation d
�

j in terms of the

transfer function gjn, and expected values of the unknown model parameters m̄n. Where

m̄n is a function of the Lagrange multipliers bn and kj. It should be noted that Eq. (20) is

essentially the same as Eq. (2) used in the development of the conceptual model. The

distinction being that Eq. (20) is written explicitly in terms of the expected values of the

unknown model parameters (flux) m̄n, and observed concentration d̄j.

In order to solve for the expected values (m�n) the Lagrange multipliers (bn) must be

determined based upon the prior estimates Sn and the elemental flux upper limit U. Then,

the kj values are estimated through an iterative procedure that upon convergence results in

optimal m�n values and posterior estimates of each pdf q(mn). The general MRE algorithm

applied in this study is shown in Fig. 4. Once the algorithm has converged, the final an
values (based upon optimal kj values) can be used to estimate the model parameter

confidence intervals. This is done by calculating the individual cumulative density

function (cdf) for each model mn (Woodbury and Ulrych, 1998).

P mnð Þ ¼ exp � anmnð Þ � 1

exp � anUð Þ � 1
0VmnVU ð21Þ

where P(mn) represents the posterior estimate of the cdf in terms of the Lagrange

multipliers (an), the parameter upper limit U, and a specified elemental flux value mn.

Solving (Eq. (20)) for mn yields the following equation,

mn ¼
ln P exp � anU½ � � 1ð Þ þ 1½ �

an
ð22Þ

which can be used to calculate the elemental flux value corresponding to a specified

probability level P.

In order to implement the minimum relative entropy algorithm with the flux plane

model presented in this paper, one must first establish the upper limit U for the

elemental fluxes. It is important to select a sufficiently large value of U that will allow

all expected values of mn to occur. The value of U can always be lowered once it is

determined that none of the simulated mn values exceed U. It should also be noted that

bn becomes zero and causes a discontinuity when Sn=U / 2. This should be kept in mind

while assigning the initial model values. For this study a modified Powell hybrid

algorithm was used to determine the bn and kj values which were then used to estimate

expected flux values (mn).
4. Solution of the flux plane model

Both of the optimization techniques applied in this study have their own unique control

parameters. However, there are some parameters common to both methods: the number of
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unknowns to be determined, number of observations (amount of prior information),

maximum number of iterations, and the convergence tolerance. In order to make an

accurate assessment and comparison of each of the methods capabilities, they were applied

using a consistent set of control parameters. Both of the methods are capable of

determining a feasible solution under certain circumstances, but in order to make a valid

comparison it is necessary to answer questions regarding the capability to converge on a

feasible solution using the minimal amount of observation data, provide reliable solutions

with the least stringent convergence criteria, and comparative computational efficiency. To

address these questions, the individual optimization techniques are applied with the flux

plane model using data from two cases: a simple numerically generated test problem and a

multiple-source tracer experiment performed in a laboratory aquifer model.

4.1. Numerically simulated test problem

The test problem (Fig. 5) represents a simplified version of the intended application of

the flux plane model (Fig. 1). A source plane consisting of 49 flux elements was

numerically simulated assuming a system specific discharge qx =0.5 m/day, a transverse
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Fig. 5. Numerically simulated flux plane test problem.

System configuration:

! Specific discharge q=0.5 m/day

! Transverse dispersivity aT=0.0002 m

! Flux cell half-width b=0.05 m

! A total of 24 simulated concentration observations were provided as input (12 observations each at 0.5 m and

1.0 m downgradient of the flux plane).
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dispersivity aT=0.0002 m and a square flux element half-width b =0.05 m. To create the

observation data, three of the flux elements were assumed active with flux intensities of 10

mg/(cm2 day) and observed downgradient concentrations were simulated at 24 locations

(12 each at distances of 0.5 and 1.0 m). The simulated concentration observations were

then used as input for the flux plane model. The goal was to use the simulated observations

to inversely determine the magnitude and location of the contributing flux elements. As

stated earlier, the test problem is an extreme simplification, and was used primarily for

algorithm debugging purposes, but it provides a good introduction to the capabilities of the

solution techniques.

When implementing the optimization algorithms, each requires a set of initial estimates

for the unknown flux elements to be determined. Ideally, input would consist of a uniform

initial value over the entire flux plane (as this requires the least amount of prior

information), and this was the first approach used. The initial value for each flux cell was

set to a flux intensity of 15 mg/(cm2 day). Using consistent convergence criteria (1e-04)

and a maximum number of iterations of 1000, SA and MRE were each used to solve the

test problem independently. SA was capable of solving the problem by estimating flux

intensities of 10 mg/(cm2 day) for the appropriate elements, and zero everywhere else.

MRE reached the maximum number of iterations and did not converge. To verify the

robust nature of the SA algorithm, uniform initial values ranging from 0.5 to 50 mg/(cm2

day) were also used with the test problem, and in each case SAwas able to converge on a

feasible solution. MRE on the other hand, even with iteration limits in excess of 10,000

and less stringent convergence criteria, was not capable of solving the simple system with

a uniform set of initial input values.

However, if sufficient prior information existed such that the set of initial values could

be refined, MRE should converge on a feasible solution. For instance, if the set of initial

values was segregated into regions of expected high flux values and expected low flux

values, MRE should converge more readily. To test this hypothesis, the initial search space

was reduced symmetrically around the known location of the sources until the MRE

algorithm converged on a solution. It was found that when an initial value of 15 mg/(cm2

day) was provided for the 20 elements immediately surrounding the known source

elements, and a low initial value (between 0 and 1) was provided for the remaining 29

elements, MRE was capable of identifying the three source cells and accurately predicting

the flux magnitude for each element to three significant figures. The results indicate that

for this simple case, when compared to SA, the initial search space had to be reduced by

60% in order for the MRE algorithm to converge.

It should be noted that the number of iterations performed is not necessarily a suitable

comparison for SA and MRE. Because the SA method is based solely upon comparison of

objective function values (derivative calculations are not required for each iteration as with

MRE), the SA algorithm performs iterations more quickly than MRE. To demonstrate this,

the simple test problem was considered without using an early return criterion for the SA

algorithm (meaning the algorithm is forced to perform 1000 iterations regardless of when

convergence is met). The SA algorithm performed 1000 iterations 15 times faster than

MRE and converged on a solution, while MRE took longer and did not converge. For

larger problems, such as the laboratory scale problem considered in Section 5, the

difference in computational speed is even greater.
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The initial applications of MRE and SA with the test problem emphasize one of the

primary differences between application of gradient-based (MRE) and random search (SA)

methods: when provided a large number of possible solutions random search methods are

typically more robust and capable of avoiding local minima in favor of the global

minimum, while gradient-based methods are typically most efficient once in the

neighborhood of a global minimum.

The primary reason for discussing the test problem was to demonstrate the robust

search capabilities of the SA algorithm and to introduce the necessity for segregating the

search space for the MRE algorithm. The initial results indicate that a greater amount of

prior information is required for the MRE algorithm to converge on a feasible solution.

With the test problem, this prior information is readily available, but for application to a

real system the amount of prior information is usually limited. One way to minimize the

amount of prior information required for MRE to converge is a combined SA-MRE

algorithm.

4.2. SA-MRE hybrid method

For the SA-MRE method, SA is used to provide an initial solution based upon

minimal prior information (a uniform set of initial values). The SA solution is then

passed to the MRE algorithm, which refines the solution while providing a measure of

parameter uncertainty. As mentioned previously, random search techniques such as SA

are very robust and can typically avoid local minima while converging on the global

minimum. However, the reliability of the final solution is not readily verified. This leads

to the question, how does one determine if the SA solution is in the neighborhood of

the global minimum so that MRE can converge efficiently? For this study, the reliability

of the SA solution was estimated by using a multi-leveled annealing schedule.

Essentially, three independent annealing processes are performed (each starting with the

same initial set of uniform values but with different initial temperatures and perturbation

limits). Because each annealing process is random and independent, they provide

verification of one another. The minimum objective function value along with the

corresponding flux values from each process are stored for comparison, and if all three

are within a defined tolerance the best set of flux values (the set with the lowest

objective function value) is passed to the MRE algorithm. The set of flux values

determined with SA now represent the initial flux values (Sn) for MRE. The Sn values

and the upper limit U are used with Eq. (16) to estimate the corresponding bn values

necessary for application of the MRE algorithm. The independent SA and MRE

algorithms along with the hybrid SA-MRE method were verified using data from

laboratory aquifer experiments.
5. Laboratory aquifer model

The aquifer model used for this study was constructed at the Air Force Research

Laboratory, Tyndall Air Force Base, Florida. The system was designed for use with

chlorinated solvents; all wetted surfaces were stainless steel or glass, minimizing the



Table 1

Physical, hydraulic, and transport properties of the three-dimensional aquifer model (Newman, 2001)

Parameter Value

Porous media Flint Silica #14 (U.S. Silica, Ottawa, IL)

Porous media dimensions (length�width�height; m) 2.0�0.5�1.0

Median grain size (d50; m) 0.0012

Porosity (n) 0.3

Longitudinal dispersivity (aL; m) 0.001–0.003

Transverse dispersivity (aT; m) 0.0002
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partitioning of hydrophobic chemicals to system components. All liquid effluent and vapor

streams passed through physical and/or chemical traps, eliminating exposure to hazardous

chemicals and allowing quantitative mass balance determinations. In the experiments

performed for this study, the model was configured to simulate a homogeneous surficial

aquifer. The porous medium was a clean, medium grained silica sand (Flint Silica #14).

The volumetric flowrate and corresponding pore water velocity were controlled by

manipulating the elevations of the inlet and outlet head tanks. The physical,

hydrodynamic, and transport characteristics of the system are presented in Table 1. The

experimental procedures and numerical analysis used to determine the dispersivities are

discussed by Newman (2001). A series of multi-point samplers were emplaced within the

flow system providing a three-dimensional distribution of over 500 sampling points within

the porous media. The longitudinal distribution (x–z plane) of multi-point samplers is

shown in Fig. 6. The lateral distribution ( y–z plane) of sample points varies with location

along the longitudinal (x) axis. Some transects have a minimum of 20 sample points while
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the more extensive transects have up to 72 sample points. Fig. 7 shows one of the more

extensive transects located at x=0.2 m, which for this experiment is also the location of the

source injection ports.

5.1. Multiple source tracer experiment

The multiple source tracer experiment was started by establishing a steady flow

field with an average saturated thickness (hs) of 0.79 m, and an average pore water

velocity of 0.54 m/day (corresponding to a specific discharge of q =0.161 m/day).

Then, three steady state plumes were developed by continuous injection of bromide

(Br�), chloride (Cl�), and sulfate (SO4
�2) tracer solutions (200 mg/l each) from three

separate injection ports, located within the upgradient, saturated region of the flow

system. Experimental conditions including source injection rates, calculated mass

loading rates, and system flow parameters are summarized in Table 2. The source

locations are shown in Figs. 7 and 8. The motivation for using three different ionic

tracers was to provide the ability to distinguish between the contributions of each point

source to the combined downgradient plume. Because all three tracers are non-reactive

the tracer concentrations were combined and treated as one single contaminant for this

analysis. However, the ability to distinguish between the contributions of each source
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Fig. 7. Source locations (transect x =0.2 m) for multiple source tracer experiment.



Table 2

System parameters for the multi-source tracer experiment

Parameter Value

Source no. 1 (chloride)

Injection point location (x, y, z; m) 0.20, 0.25, 0.65

Concentration (mg/l) 200

Injection Rate (ml/min) 0.8

Mass loading rate (mg/day) 230.4

Source no. 2 (bromide)

Injection point location (x, y, z; m) 0.20, 0.20, 0.50

Concentration (mg/l) 200

Injection rate (ml/min) 0.378

Mass loading rate (mg/day) 108.9

Source no. 1 (sulfate)

Injection point location (x, y, z; m) 0.20, 0.30, 0.50

Concentration (mg/l) 200

Injection rate (ml/min) 0.373

Mass loading rate (mg/day) 107.4

Flow parameters

Average saturated thickness (hs; m) 0.79

Average effluent water flowrate (Qx; m
3/day) 0.0635

Specific discharge ( qx, m/day) 0.161

Average pore water velocity (v; m/day) 0.54
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allowed for additional scrutiny of the numerical capabilities for estimating the spatial

distribution of mass flux. It also provided helpful information for trouble-shooting

simulated flux values at zones of plume overlap during the early stages of model

verification.

Transient tracer concentrations were measured at multiple locations along the flow path

in order to determine when steady state conditions were established. Once the plumes had

reached steady state, tracer concentrations were collected throughout the entire model

aquifer domain providing a bsnap shotQ of the steady state tracer distribution within the

porous media (Fig. 8). The sources are located at transect x =0.2 m and the tracer

distributions are shown for transects x =0.5, 0.8, 1.2, and 1.7 m.

5.2. Flux plane model application to laboratory tracer experiment data

The observed tracer concentrations from the multiple-source tracer experiment

performed in the laboratory aquifer model (Fig. 8) were used as input to test the

ability of each algorithm for estimating mass flux. Five different simulation scenarios

were considered (Fig. 9) using the laboratory data. Each scenario represented a different

set of bobservedQ data, which were used to inversely determine the flux magnitude and

distribution at the source plane. The purpose for considering the different scenarios was

to consider how the number and location of observations affects the inverse flux

estimates. In Scenario 1, the measured data from each of the 4 downgradient transects

were used as observed data for inversely simulating the mass flux at the source plane. In

Scenario 2, the measured data from the furthest two transects (x =1.2 and 1.5 m) were
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used as observation data to inversely simulate the mass flux at the source plane. The

simulated flux values were then used to solve the forward problem and predict resulting

tracer concentrations at the two transects (x =0.5 and 0.8 m) nearest the flux plane. The

predicted concentrations were then compared to the observed concentrations to verify

the simulation results. The remaining three scenarios were performed similarly as

indicated in Fig. 9.

In order to verify results of the inverse simulations, a method for comparing the model-

simulated fluxes to the known tracer injection rates was necessary. To do this, the injection

concentration (200 mg/l) for each tracer was used with the source injection rates to

estimate mass loading rates at the source plane (Table 2). Then, the mass loading rates

were compared to the integrated mass flux values determined from the model-simulated

fluxes. The comparison was considered as the percent mass recovered (calculated as the

ratio of total simulated mass flux through the plane to the sum of the estimated mass

loading rates for each of the tracers).

The flux plane used for application with the multiple source tracer data consisted of 442

elements, each representing a 2-cm square plane source with a possible flux intensity

ranging from a lower limit of 0 mg/(cm2 day) to the specified upper limit U. The upper

limit is established based upon the specific discharge ( q =0.161 m/day) and an assumed

tracer concentration limit. It was known that the tracers were injected as 200 mg/l solutions

so the true flux upper limit is 3.22 mg/(cm2 day), but for practical application the true

upper limit would not be known. A series of simulations were run using values of U

ranging from 3.22 to 16.10 mg/(cm2 day) corresponding to concentration limits of 200 and
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1000 mg/l, respectively. It was found that the integrated mass flux was not very sensitive

to the upper limit, but the spatial distribution of the flux intensities within the flux plane

was. As the upper limit increases, the spatial distribution of flux intensities approaches the

case where only three flux elements are active (one for each injection point) each with very

high flux intensity. It was found that an upper limit of 4.83 mg/(cm2 day) (corresponding

to a concentration limit of 300 mg/l) provided both consistent integrated mass flux values

and spatial distributions.

An order of magnitude sensitivity analysis was performed to evaluate the model

sensitivity to transverse dispersion. Results for transverse dispersivity (aT) values of 0.002,
0.0002, and 0.00002 m were compared for Scenario 1, and the corresponding percent mass

recovered at the flux plane was 1.17, 1.07, and 1.04, respectively. This indicates that in terms

of the integrated mass flux, the model is not extremely sensitive to transverse dispersion.

What does vary between these cases is the distribution of simulated flux intensity within the

plane. For the case with higher dispersion, there are smaller zones of high flux intensity,

while for the case of lower dispersion there are larger zones of lower flux intensity.

The model sensitivity to U and aT is directly related to the size of the flux elements. If

the plane is discretized such that the elements are smaller than the expected scale of the

source zone, the model is allowed greater flexibility when trying to match the integrated

mass flux across the plane. The result is that the total flux across the plane and the total

contribution of each element to downgradient concentrations is not very sensitive to

changes in U and aT.
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The five simulation scenarios were evaluated using SA, MRE, and the hybrid SA-MRE

method. As with the numerical test problem, MRE required a greater amount of prior

information in order to isolate the source zone and converge on a feasible solution. For this

problem the initial search space of 442 flux elements had to be reduced by 64% in order

for the MRE algorithm to converge. When the MRE algorithm did converge, the mass

recovery for the independent SA and MRE algorithms were practically the same. For the 5

scenarios considered, the MRE result was on average 0.01% less than the SA result. The

results demonstrate that the major differences between the two methods are the amount of

required prior information and the comparative computational speed. For application with

the laboratory aquifer data, SA is by far the faster algorithm, typically converging 50 times

faster than MRE.

Application of the hybrid SA-MRE method produced flux values that were similar to

those obtained by the independent algorithms. For Scenario 5 the SA, MRE, and SA-MRE

percent mass recovered were 1.05, 1.04, and 1.04, respectively. What should be noted is

that on average the SA-MRE algorithm converged 10 times faster than MRE. This

indicates that the primary distinction between the MRE and SA-MRE methods is not the

accuracy of the final results, but the fact that the hybrid method converges faster than the

independent MRE algorithm while requiring less prior information.

The percent mass flux recovered at the source plane for each scenario using SA-MRE is

shown in Fig. 9. The largest error was seen in Scenario 3, where the integrated mass flux at

the source plane was overestimated by 19%. Scenario 5 showed the best mass recovery

(1.04), slightly overestimating the integrated mass flux at the source plane by 4%. The

corresponding spatial distribution of simulated mass flux for Scenario 5 is shown in Fig. 10.
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The information available from the aquifer experiments does not allow direct verification of

the spatial distribution, however the scale of the source zones were estimated by equating

the system specific discharge to the known mass injection rates at each of the three tracer

injection locations. For the chloride source (which had the greater injection rate) the

estimated width of a square source injection zone was 9 cm. The apparent model simulated

width was approximately 12 to 14 cm (Fig. 10). For the bromide and sulfate sources (which

had the same injection rates) the estimated width of a square source injection zone was 6 cm

and the apparent model simulated width was approximately 8 to 10 cm.

As discussed previously, the primary reason for incorporating MRE in the hybrid

method is to provide a measure of the uncertainty related with the simulated flux values.

Fig. 11 shows the SA-MRE estimates for the pdf, 95% confidence interval, and mean

(expected) value of the mass flux for one of the source plane elements ( y =0.25 m, z =0.65

m), where the initial pdf is the uniform (box car) distribution and the final pdf is the

truncated exponential (Eq. (16)) as discussed by Woodbury and Ulrych (1996). The

intermediate pdf is one of many intermediate distributions that are developed while

iterating to solve the inverse problem. The SA-MRE algorithm provides similar estimates

for each of the 442 flux elements within the flux plane.

To demonstrate the affect of the assigned upper limit U on the model results, the

expected flux magnitude and estimated 95% confidence interval for each of the 442

source plane elements were plotted as shown in Figs. 12 and 13. For the case of an

upper flux limit of 4.83 mg/cm2 day (Fig. 12), it is evident that greater confidence is

associated with estimated flux values at either end of the range of simulated expected

values. Remembering that the upper limit U is set at 4.83 mg/(cm2 day) when it is
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known to be approximately 3.22 mg/(cm2 day) note the smooth distribution of expected

flux values within the specified range, while the corresponding confidence intervals are

relatively large. If the more informed flux upper limit of 3.22 mg/(cm2 day) is used

(Fig. 13) the distribution of expected values is not as smooth between the upper and

lower bound, but the confidence associated with each of the expected flux values is

improved. This is expected because with a more stringent upper limit, the model does

not have as much freedom to distribute the contribution of flux elements within the

source plane. A greater number of flux elements are set closer to the upper and lower

bounds and fewer are set at intermediate values. Comparison of Figs. 12 and 13

demonstrates the capability of the hybrid method to incorporate additional prior

information in order to update flux estimates and improve the confidence associated

with the estimates.

For additional verification of the inverse simulation results, the SA-MRE expected

flux values for Scenarios 2 through 5 were used to provide forward predictions of

downgradient concentrations as indicated in Fig. 9. Fig. 14 compares the model

predicted concentrations to the observed concentrations for Scenario 5 using the less

informed flux upper limit of 4.83 mg/(cm2 day). The maximum absolute error was 29

mg/l with an average absolute error of 0.76 mg/l. The results from Scenario 5 are

representative of the predictions obtained for the other scenarios. The forward

simulation results demonstrate that the simulated mass flux values at the source plane
Scenario5: Predicted concentrations at transects x = 0.8 and 1.7 m
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Fig. 14. Plot of observed vs. predicted concentrations for simulation Scenario 5 and upper flux limit of 4.83 mg/

(cm2day).
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can be used to provide reasonable predictions for downgradient contaminant

concentrations.
6. Summary and discussion

With the goal of developing a tool for characterizing contaminant source zones in terms

of mass flux, a hybrid SA-MRE method was applied in conjunction with a flux plane

model. SA-MRE takes advantage of the robust solution capabilities of SA and the

uncertainty estimation capabilities of MRE. The coupled technique provides probability

density functions and confidence intervals that are not available from an independent SA

algorithm and they are obtained more efficiently than if determined by an independent

MRE algorithm. SA-MRE along with the flux plane model provides a robust method for

estimating contaminant mass flux values and provides a measure of the uncertainty

associated with the flux values.

An important characteristic of the flux plane model is the size of the individual

elements. Although, the individual flux elements are sensitive to U and aT, the controlling

factor in model convergence is the combined contribution of the flux elements, not the

individual flux intensities. If the flux elements are established such that their size is

considerably smaller than the expected scale of the contaminant source zone, the effect of

individual flux error is reduced.

In its current form, the flux plane model is admittedly a simplification of a more

complex problem and is only applicable under the conditions assumed for the applied

transfer function (steady state, uniform, horizontal flow in a homogeneous aquifer). It

should be noted that incorporating a different transfer function, perhaps a numerical

solution rather than an analytical solution, could expand the applicability of the flux plane

model by incorporating flow field heterogeneities. However, implementing a numerical

solution significantly increases the level of requisite information and this information is

not always readily available. In its current form the model provides a simple method for

providing initial estimates for the magnitude and spatial distribution of contaminant mass

flux based upon observed groundwater contaminant concentrations. For the five

simulation scenarios presented in this study, the integrated mass flux ranged from 88%

to 119% of the known total flux (Fig. 9).

The simplicity of the flux plane concept allows for relatively quick application of the

model, and because the model utilizes average hydrodynamic parameters and bulk

hydrogeological property values, the model does not require a large amount of site

characterization data. The requisite data represent standard information that is typically

obtained during initial site assessments. The flux plane model relates observed

contaminant concentrations to mass flux through a plane, and provides a method for

estimating the integrated mass flux or total mass crossing a specified boundary. This

boundary could represent a regulatory boundary or the intersection of adjoining properties,

and the results provide an estimate of the total mass crossing the boundary. The method

can be easily modified to incorporate different transfer functions, and would be especially

applicable if utilized with directly measured contaminant flux values obtained using a

method such as that presented by Hatfield et al., 2004.
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