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[1] Estimation of water and contaminant discharges is an important hydrological problem.
Fractured rock aquifers are recognized as highly complex flow and transport systems, and
the fractured rock passive flux meter (FRPFM) is a recently tested device to simultaneously
measure cumulative water and contaminant mass fluxes in fractures intersecting an
observation well (boring). Furthermore, the FRPFM is capable of indicating orientations
and directions of flow in hydraulically active (‘‘flowing’’) fractures. The present work
develops a discharge estimator for when FRPFM measurements of fracture fluxes in the
direction perpendicular to a transect (control plane) along one or more observation wells are
available. In addition, estimation uncertainty in terms of a coefficient of variation is
assessed based on a Monte Carlo approach under normalized conditions. Sources of
uncertainty considered are spatially random fracture trace locations, random trace lengths,
and orientations as well as variability of trace average fluxes (including smooth spatial
trends), variability of local fluxes within traces, and flux measurement errors. Knowledge
about the trace length distribution, which is commonly not available from borehole surveys,
is not required for discharge estimation. However, it does affect the uncertainty assessment,
and equations for upper uncertainty bounds are given as an alternative. In agreement with
general statistical inference, it is found that discharge uncertainty decreases proportionally
with the number of fluxes measured. Results are validated, and an example problem
illustrates practical application and performance.

Citation: Acar, €O., et al. (2013), A stochastic model for estimating groundwater and contaminant discharges from fractured rock
passive flux meter measurements, Water Resour. Res., 49, doi: 10.1002/wrcr.20109.

1. Introduction

[2] Fractured rock formations are complex hydrogeolog-
ical environments, and predictive means for flow and trans-
port phenomena in this media are severely restricted
[Berkowitz, 2002]. Particularly, economic and technical
challenges are faced for characterization and remediation
of dense nonaqueous phase liquid source zones. Today’s
conventional methods have limited usage in terms of site
depiction, monitoring, and simulation of flow and transport

processes in fractured rock groundwater systems [Faybish-
enko et al., 2000, 2005; Dietrich et al., 2005]. Moreover,
quantification of contaminant discharge near source zones
is crucial for assessing long-term risk, evaluating remedial
performance, and meeting regulatory compliance [Inter-
state Technology & Regulatory Council (ITRC), 2010]. The
current state of the art technologies are based on using
measurements or estimates of Darcy water fluxes (e.g., gra-
dient-conductivity method) and groundwater concentrations
(e.g., multilevel sampling) in space and time to estimate
contaminant discharges from a source zone. These indirect
assessments of contaminant discharges are subject to high
(and generally not quantified) uncertainty levels. This is due
to the temporal and spatial variability of hydrogeological
conditions in inherently heterogeneous fractured rock for-
mations. Some approaches to consistently quantifying mass
discharges and uncertainties based on a limited amount of
information have been recently presented for porous aqui-
fers [Li et al., 2007; Schwede and Cirpka, 2010; Troldborg
et al., 2010; Beland-Pelletier et al., 2011; Cai et al., 2011]
and fractured rock [Reeves et al., 2010]. For porous aquifers
the use of mass flux measurements (rather than determining
water flux and contaminant concentration separately) has al-
ready been demonstrated to lead to an enhanced portrayal of
contaminated sites [Feenstra et al., 1996; ITRC, 2010].
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Mass fluxes have been shown to result in improved under-
standing of plume dynamics and conceptual site models,
which are crucial elements for optimization of remediation
decisions and actions [Nichols and Roth, 2004; Basu et al.,
2006].

[3] The passive flux meter (PFM) developed by Hatfield
et al. [2004] and Annable et al. [2005] is a direct method
for monitoring of time-integrated water and contaminant
mass fluxes in porous media over different periods of time
(days to months). Spatial interpolation and integration of
measured local fluxes over a transect may be used to esti-
mate water and/or contaminant discharges with respective
uncertainties [Klammler et al., 2012]. Currently, the PFM
is the only passive sampler which has proven to effectively
measure mass fluxes near source zones [Verreydt et al.,
2010]. Based on the same principles as the PFM for porous
media, the fractured rock passive flux meter (FRPFM) is a
technology in development that aims at measuring the

magnitudes and directions of cumulative water and contam-
inant fluxes in fully saturated rock fractures [Cho et al.,
2011; Newman et al., 2009, 2010; Hatfield, 2010; Klamm-
ler et al., 2008]. As seen in Figure 1, the FRPFM is a device
composed of an impermeable flexible liner (or packer) and
a permeable reactive sorbent layer sandwiched between the
impermeable flexible liner and the borehole circumference
[Cho et al., 2011; Newman et al., 2009, 2010; Hatfield,
2010; Klammler et al., 2008]. The sorbent may be a perme-
able fabric derived from activated carbon, ion exchange
resin, etc. The impermeable flexible liner is typically avail-
able in a tube or sock design that is easily fitted into a bore-
hole. Once it is inserted it is inflated (pressurized) with a
fluid to cause it to conform to the shape of the borehole so
that the permeable sorbent layer is pressed against the bore-
hole wall. Due to the impermeability of the flexible liner,
the ambient flow within the fractures does not enter the
borehole (thus avoiding major cross-connections between

Figure 1. (a) Vertical cross section in the general direction of ambient groundwater flow (xz plane) of
an unscreened borehole containing a FRPFM. (b) FRPFM installed in (left) a boring and (right) its hori-
zontal cross section. Arrows and flow lines indicate paths of water and advectively driven tracer/contam-
inant particles.
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different fractures and consequently uncontrolled distortion
of ambient flow conditions near the borehole). Flow is
instead diverted around the impermeable flexible liner (Fig-
ure 1b) and passively intercepted by the sorptive layer,
which retains target groundwater contaminants (e.g., tri-
chloroethylene (TCE), dichlororethylene (DCE), and vinyl
chloride (VC)), while simultaneously releasing nontoxic
resident tracers (e.g., visible dyes and/or branch alcohols).
The amounts of tracer remaining and contaminant sorbed
during a measurement are found from laboratory analysis.
Tracer loss is proportional to groundwater flow through the
sorbent, and marks of leached visible tracers reveal location
and orientation of flowing fractures as well as the direction
of flow in the fracture (Figure 1b). Furthermore, contami-
nant mass captured is proportional to contaminant flux
through the sorbent. After correction for flow distortion
near the FRPFM [Klammler, 2004; Klammler et al., 2007],
estimates of undisturbed ambient groundwater and contami-
nant mass fluxes in the fractures are obtained.

[4] In summary, the FRPFM is a potential tool for
detecting hydraulically active fractures and determining the
following parameters for each of them at the point of inter-
section with the FRPFM [Cho et al., 2011; Newman et al.,
2009, 2010; Hatfield, 2010; Klammler et al., 2008]: (1)
location or depth; (2) orientation, i.e., strike, dip, and dip
orientation; (3) direction of groundwater flow; (4) cumula-
tive (i.e., time-integrated) magnitude of water flux; and (5)
cumulative magnitude of contaminant flux. Water and con-
taminant fluxes are hereby obtained as integral values over
fracture aperture (i.e., as fracture discharges per unit frac-
ture length in dimensions of L2/T for water and M/(LT) for
contaminant mass). This eliminates a considerable amount
of uncertainty typically introduced by the measurements or
estimates of fracture aperture (e.g., for application of cubic
law/Hele-Shaw analogue) [Novakowski et al., 2006]. In
what follows, it is assumed that the FRPFM may reliably
provide parameters (1)–(5) for all hydraulically active frac-
tures intersected, where flux magnitudes are associated
with a random measurement error. Laboratory and field
validation of this capability is conducted as part of an inde-
pendent research effort. The present work develops a meth-
odology to interpret local flux measurements from FRPFMs
in one or more observation wells in terms of water and/or
contaminant discharges with associated uncertainties for a
transect as shown in Figure 2a, for example. For this pur-
pose, a discharge estimation formula is derived in section 2,
and a Monte Carlo simulation is used in section 3 for valida-
tion of unbiasedness as well as for developing expressions
of estimation uncertainty (e.g., estimation error variance or
coefficient of variation (CV)). Section 4 provides validation
of results and an example problem for illustration of practi-
cal application and performance.

2. Development of a Discharge Estimator

2.1. Assumptions

[5] When the flow and transport processes in the frac-
tured media are dominated by fracture zones, it is feasible
to describe hydraulic features specifically using a discrete
fracture network model [Helmig, 1993; Chiles, 2005]. Vir-
tually always, the knowledge of in situ individual joint
characteristics is limited, which has led discrete network

models to be based on stochastic concepts. One of the
major drawbacks of discrete fracture network modeling
techniques is that some of the detected fractures through
conventional borehole measurements can be nonconduc-
tive. Since FRPFM measures flow through active fractures
only, this concern may be alleviated here. The particular
assumptions adopted in the present work for developing a
discharge estimator are summarized as follows:

[6] 1. FRPFM only measures advective fluxes through
active fractures. Diffusive transport is assumed to be negli-
gible for flow velocities larger than approximately 1 cm/d
resulting in Peclet number Pe> 10 for characteristic length
of 10 cm (approximate FRPFM diameter) and tracer/con-
taminant diffusion coefficient in water at the order of 1
cm2/d. Furthermore, advective and diffusive flow through
the rock matrix is neglected.

[7] 2. For the present purpose of discharge estimation,
only the flux components perpendicular to the transect are
considered. These components correspond to qx in Figure
2b, where the subscript ‘‘x’’ is dropped hereafter for brev-
ity. By definition, flux components inside the transect plane
(qy and qz in Figure 2b) do not contribute to the discharge.

[8] 3. Fracture traces defined as the intersections of frac-
ture planes with the transect are straight lines of random
lengths and orientations (Figures 2c and 3). The statistical
properties of trace length and orientation may vary
smoothly across the transect.

Figure 2. (a) Multiple well transect of width W and
height H in fractured rock. Bold arrows represent ground-
water or contaminant fracture flux components qx perpen-
dicular to the transect, which contribute to discharge. (b)
Decomposition of 3-D FRPFM measured flux qxyz inside
the fracture plane (not shown) into flux vectors qy and qz

contained in the transect (yz plane) and a vector qx perpen-
dicular to the transect. (c) Transect plane with a single frac-
ture trace (intersection of fracture plane with transect) of
length t and orientation � taken between 6�/2 (dot repre-
sents trace midpoint).
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[9] 4. Trace midpoints (center locations of traces as illus-
trated by dots in Figures 2c and 3b) are assumed to follow
a Poisson process, which implies complete randomness of
midpoint locations for a given expected number of mid-
points per unit transect area (density). Poisson processes
are mathematically simple and commonly used in fractured
rock hydrogeology [Chiles and de Marsily, 1993; Chiles,
2005]. The expected density of trace midpoints may vary
smoothly across the transect.

[10] 5. The flux variability across a transect consists of
three components : (a) a smooth trend function of expected
trace average fluxes (e.g., contaminant plume shape); (b)
variability of trace average fluxes between traces; and (c)
variability of local fluxes within traces.

[11] 6. FRPFMs measure local fluxes within traces at the
points of intersection. The observed fluxes are integral val-
ues over fracture aperture and include random measure-
ment errors.

[12] 7. The transect may be of arbitrary shape and fully
contains one or more parallel (e.g., vertical) FRPFMs of ar-
bitrary lengths.

[13] Note that the analytical development below makes
use of basic Poisson properties, but it does not involve any
distributional assumptions for trace length, orientation, and
fluxes. For illustration in the simulation and example sec-
tions, however, uniform, exponential, and log-normal dis-
tributions are used as indicated.

2.2. Approximation of True Transect Discharge

[14] In order to develop a discharge estimator, a ‘‘true’’
discharge Q, which is to be estimated, has to be defined. It
appears to be a natural choice that Q is taken as the sum of
all flows (discharges) through traces or portions thereof,
which are contained in the transect as illustrated by the
bold portions of traces in Figure 3a. Mathematically, this
may be written as

Q ¼
XN 0
i¼1

t0iqi; (1)

where N0 is the number of all traces that are fully or par-
tially contained in the transect, and ti

0 are the respective full

or partial trace lengths contained in the transect (bold in
Figure 3a) conducting average fluxes qi. Average trace
fluxes qi are hereby considered to be integrated over trace
aperture (and projected onto the direction perpendicular to
the transect ; Figure 2b), such that the product ti

0qi is the
flow through a trace or portion thereof inside the transect ; i
is an index numerating each trace contributing to discharge.
In order to simplify the mathematical development of a dis-
charge estimator, an approximation Qa to Q will be used in
the sequel. As illustrated by Figure 3b, Qa is defined as the
discharge through all traces (of full lengths), whose mid-
points are located inside the transect. Hence,

Qa ¼
XN

i¼1

tiqi; (2)

where N is the number of trace midpoints inside the tran-
sect, and ti and qi are the respective full trace lengths and
trace average fluxes (integrated over trace aperture as
directly measured by FRPFM and projected onto the direc-
tion perpendicular to the transect ; Figure 2b). The validity
of using Qa instead of Q will be verified through Monte
Carlo simulation later.

2.3. Discharge Estimator for a Single Intersection

[15] At this point, we temporarily limit attention to all
traces of orientation �j with respect to the horizontal and
with average fluxes equal to qj. The subscript ‘‘j’’ is used to
denote all respective variables. A transect discharge Qaj

then possesses an expectation �Qaj (i.e., average over many
realizations/ensemble) given by

�Qaj ¼ qj

Z
AT

�j�tjdA; (3)

where dA denotes an infinitesimal portion of the transect
area AT (e.g., of width W and height H as shown for the
case of a rectangular transect in Figure 2a), �j is the spa-
tially variable Poisson density of midpoints (i.e., the
expected number of midpoints per unit transect area), and
�tj is the spatially variable expectation of trace length t.
Equation (3) explores the facts that the expectation of trace
midpoints inside an infinitesimal transect element dA is
equal to �jdA and that the expected discharge per trace is
equal to �tjqj. For constant trace length tj and orientation �j

Figure 4a illustrates that the trace midpoints of all traces
intersecting a FRPFM of length Lk have to lie within the
parallelogram shown, which is of area Lktj cos �j. Assuming
further that �j is spatially constant it is known that the
expected number of midpoints in this area (and hence the
expected number of intersections) is equal to �Njk¼�jLk

cos �jtj. For tj following an arbitrary probability distribution
with expectation �tj, the expected number of intersections
may be generalized to �Njk¼�jLk cos �j�tj. Applying this
to an infinitesimal portion dL along Lk for integration and
allowing �j and �tj to be variable lead to an expected num-
ber of intersections as [Robertson, 1970; Baecher et al.,
1977; Long and Witherspoon, 1985]

�Njk ¼ cos�j

Z
Lk

�j�tjdL; (4)

Figure 3. Graphical illustration of (a) true discharge Q
and (b) its approximation Qa. Rectangle represents transect
limits containing a single FRPFM (bold dashed). Fracture
traces are thin dashed with portions ti

0 and ti contributing to
Q and Qa, respectively, as bold continuous. Dots represent
trace midpoints, and heights of both transects are equal to H.
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where �j is taken between 6�/2.Here and in what follows,
the subscript k¼ 1, 2, . . . , Nwell designates one out of Nwell

observation wells across the transect with FRPFM
installed.

[16] An unbiased estimator of Qaj for constant qj and �j

may be found by substituting unbiased (and uncorrelated)
estimators for the unknown terms in equation (3). For this
purpose, use is made of the following approximation

1

AT

Z
AT

�j�tjdA �
XNwell

k¼1

!k

Lk

Z
Lk

�j�tjdL ¼ 1

cos�j

XNwell

k¼1

!k�Njk

Lk
; (5)

where !k are weighting constants assigned to each FRPFM,

such that
XNwell

k¼1
!k ¼ 1. Equation (5) approximates the ar-

eal average of the product �j�tj over the transect by a
weighted mean of line averages of �j�tj over all FRPFMs.
As a consequence, it appears natural to choose !k¼Ak/AT,
where Ak is the area, which contains all the points in the
transect that are nearest neighbors to the kth FRPFM (this
is in analogy to polygonal declustering in classical geosta-
tistics [Goovaerts, 1997]). Note that equation (5) becomes
exact if �j�tj is constant or if �j�tj only varies in the vertical
direction, given that all FRPFMs span the total height of a
transect. This is relevant for commonly encountered field
situations, where the degree of rock fracturing decreases
with depth from the surface. For trends in �j�tj in the hori-
zontal direction, equation (5) represents a stepwise (dis-
crete) approximation, which also becomes exact for equal
well spacing in combination with a linear trend function.

As such, possible approximation errors of equation (5) may
only occur due to higher-order variability in �j�tj in the
horizontal direction. The final expression in equation (5) is
obtained from eliminating

R
Lk
�j�tjdL using equation (4),

such that
R

AT
�j�tjdA may be isolated and substituted into

equation (3) to express �Qaj ¼
qjAT

cos�j

XNwell

k¼1

!k�Njk

Lk
. Accord-

ing to common statistical practice, the unknown values of
�Njk may be estimated without bias by the samples Njk rep-
resenting the actual numbers of trace intersections observed
on the FRPFMs. Since equation (4) does not discriminate
between traces that cause a single or more intersections,
�Qaj also includes the possibility that individual traces may
intersect more than a single FRPFM. Yet, without loss of
generality, attention may be limited to a single intersection
(not a single trace, i.e., Njk¼ 1 for one FRPFM, and Njk¼ 0
for all others), and qj may be substituted by its unbiased
FRPFM measurement q�j at that intersection (the respective
�j is assumed to be measured error free). This results in an
unbiased transect discharge estimator

��j ¼ q�j
AT!k

Lkcos�j
(6)

for a single intersection, i.e., ��j is the discharge estimate
for the transect if only a single trace intersection was
observed. In equation (6) transect area AT, weights !k, and
FRPFM lengths Lk are specified, and q�j and �j are obtained
from FRPFM observation. In what follows, the relationship
q�j ¼ qj�qj is used, where �qj is assumed to be a positive

Figure 4. (a) Examples of traces of length tj and orientation �j intersecting (continuous) and not inter-
secting (dashed) a FRPFM (bold dashed). (b) One stochastic realization of a hypothetical field scenario
as used in the example problem and with parameters from Table 1. Transect (bold rectangle; 5 m � 20
m) with five evenly spaced vertical FRPFMs (dashed) intersecting traces (thin continuous) at the circles.
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random variable of unit expectation (unbiasedness), and
which accounts for local flux variability within individual
traces in addition to the FRPFM flux measurement errors.
The multiplicative nature of �qj (as opposed to additive,
for example) is in concordance with the common use of
percentages for measurement errors and also reflects the in-
tuitive expectation that flux variability inside traces is pro-
portional to the magnitude of the average trace flux
(constant CV rather than constant standard deviation).

2.4. Discharge Estimator for Multiple Intersections

[17] In reality and as illustrated by Figure 4b, multiple
intersections of traces with FRPFMs will occur possessing
different fluxes q�j and orientations �j. Since discharges
(and their estimates) are additive and since sums of Pois-
son processes again resemble Poisson processes of added
densities [Kingman, 1993], ��j of equation (6) may be
computed for each intersection and added together. This
leads to an unbiased estimate Q� of total transect dis-
charge Qa as

Q� ¼
XNPFM

j¼1

��j ¼ AT

XNwell

k¼1

!k

Lk

XNk

j¼1

q�j
cos�j

; (7)

where Nk denotes the number of trace intersections for the

kth FRPFM, and NPFM ¼
XNwell

k¼1
Nk represents the total

number of intersections for all FRPFMs together. For rec-
tangular transects of width W and height H, where all
FRPFMs are of length H, ��j ¼ q�j

W!k

cos�j
and when these

FRPFMs are also evenly spaced, then ��j ¼ q�j
W

Nwell cos�j
. It

may be seen that ��j (and Q�) for these two cases are inde-
pendent of H, which is indirectly accounted for through the
fact that NPFM grows with H. Perhaps more interesting is
that equation (7) is independent of local trace midpoint
densities and trace length distributions. This is quite fortu-
nate because information about these parameters is gener-
ally not available from borehole measurements. It results
from a combination of two facts. (1) The expectation of
true discharge (equation (3)) is a function of the product
�j�tj between trace density and the expectation of trace
length integrated over AT. (2) This integral may be directly
estimated by the number of intersections observed along
the FRPFMs (equations (4) and (5)), without generally
unavailable knowledge about the individual factors �j and
�tj at all locations. For the same reason, equation (7) inher-
ently accounts for the possibility of single traces intersect-
ing more than one FRPFM. That is, the virtually impossible
task of identifying intersections at multiple FRPFMs
caused by one and the same trace is not required (each
intersection is simply included in the summation of equa-
tion (7)). After all, it does not matter for transect discharge
and total number of intersections whether the same fluxes
are conveyed through many short traces (each causing at
most one intersection) or through few long traces (each
causing multiple intersections). The fact that Q� does not
require trace length also implies that possible correlations
between trace length and trace flux (e.g., longer traces are
expected to be better connected and hence may tend to con-
vey larger fluxes) do not affect the estimator or its unbias-
edness. For a given density, the number of intersections is

proportional to trace length (equation (4)) and if longer
traces are associated with larger (or smaller) fluxes, then
this will be reflected in the frequency of observed values
of q�j .

3. Validation of Unbiasedness and Assessment of
Estimation Uncertainty

3.1. Monte Carlo Simulation

[18] It appears possible to use the second-order properties
of Poisson processes (i.e., mean, variance, covariance)
[Kingman, 1993] to analytically verify unbiasedness of equa-
tion (7) with respect to Q (recall that Q� was derived as an
unbiased estimator for Qa) and to develop expressions for
estimation variances. However, this task may become quite
cumbersome for arbitrary trace orientations or more than a
single FRPFM, and as an alternative, a numerical Monte
Carlo (unconditional stochastic simulation) approach is
adopted here. The approach is two-dimensional (in the plane
of the transect) and does not involve any hydraulic model-
ing. In most general terms, it consists of the following proce-
dure: before realizations can be generated, the size of the
simulation domain has to be defined. For given transect
dimensions, the simulation domain needs to extend suffi-
ciently far in all directions beyond the transect limits, such
that the portion of traces that could intersect the transect
(i.e., contribute to Q and/or Q�), but are not simulated
because their midpoints lie outside the simulation domain, is
zero or sufficiently small. For trace length distributions with
finite upper bounds and arbitrary trace orientations, this may
be achieved by extending the simulation domain by a dis-
tance equal to half the upper trace length bound beyond all
sides of the transect. For unbounded trace length distribu-
tions (e.g., exponential or log-normal), this distance may be
defined as half of a large enough quantile (99th percentile in
the present work), such that the probability of not simulating
a relevant trace is negligible without unnecessarily inflating
computation times. Once the size of the simulation domain
is defined, it remains constant for all realizations, which
result from repeating the following steps:

[19] 1. Determine the number of trace midpoints in the
simulation domain. It is a random number obtained from a
Poisson distribution [Kingman, 1993] with expectation
equal to

R
AS
�jdA, where AS is the area of the simulation

domain.
[20] 2. Locate all trace midpoints across the simulation

domain by randomly picking y and z coordinates from re-
spective distributions (e.g., uniform distributions with
upper and lower bounds equal to the y and z coordinates of
the simulation domain limits if �j is constant).

[21] 3. Assign trace lengths, orientations, and trace aver-
age fluxes to all midpoints by randomly drawing from re-
spective probability distributions (or one joint distribution),
which may be a function of y and/or z.

[22] 4. Evaluate equation (1) to obtain one realization of
the true discharge Q.

[23] 5. Take virtual FRPFM measurements by determin-
ing the intersections with traces and recording the respective
trace orientations and trace average fluxes qj (representing
the sum of a possible smooth trend function and random
flux variability between traces). Draw �qj (representing
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within-trace flux variability and measurement error) from a
positive random distribution of unit expectation to obtain
observed fluxes as q�j¼ qj�qj. Evaluate equation (7) to gen-
erate one realization of the discharge estimate Q�.

[24] Denoting by M a large number of realizations and
using m¼ 1, 2, . . . , M as an index for individual realiza-
tions, steps 4 and 5 deliver pairs of values Qm and Q�m,
which result in an estimation error em¼Q�m�Qm for each
realization. Over a large number of realizations, em popu-
late a distribution with mean �e and variance �2

e given by

�e ¼
1

M

XM
m¼1

em (8)

�2
e ¼

1

M

XM
m¼1

em � �eð Þ2: (9)

The expectation �Q of true discharge is obtained as

�Q ¼
1

M

XM
m¼1

Qm (10)

If the relative mean estimation error �e/�Q approaches zero
as M increases, then the estimator is unbiased, i.e., the expec-
tation of its estimation error is zero.

3.2. Normalization

[25] Since investigating a large number of possible pa-
rameter combinations through this procedure is impractical,
attention is limited hereafter to rectangular transects, and
the following normalizations are applied to subsequently
generalize the outcomes of the Monte Carlo simulation as
much as possible:

[26] 1. Transect and traces are scaled to unitary transect
width and height (W¼H¼ 1).

[27] 2. Trace midpoint density is adopted for unitary expec-

tation of FRPFM-trace intersection (�Nj ¼
XNwell

k¼1
�Njk ¼ 1).

[28] 3. Flux variability within traces and measurement
errors are zero (q�j ¼ qj).

[29] 4. Trace average fluxes in the normalized domain
are the same for all traces but may be of arbitrary value
(zero between-trace flux variability, i.e., qj¼ constant).

[30] The geometric scaling of a real-world transect and
its traces to W¼H¼ 1, such that the number of intersec-
tions and the portions of traces contributing to Q and Qa

remain unaffected, is simply a division of all y coordinates
by W and all z coordinates by H. This leads to normalized
horizontal and vertical trace length components of �y¼ tj
cos �j/W and � z¼ tj sin �j/H resulting in a normalized trace

length � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

y þ �2
z

q
of

� ¼ tj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�j

W

� �2

þ sin�j

H

� �2
s

: (11)

In a similar way, the normalized trace orientation #¼
arctan(� z/�y) is found as

# ¼ arctan
W

H
tan�j

� �
: (12)

It is seen that equations (11) and (12) reduce the number of
variables from four (tj, �j, W, H) to two (� , #). Furthermore,
in order to achieve a unitary expectation of intersection, �j

is divided by �Nj ¼ cos�j

XNwell

k¼1

R
Lk
�j�tjdL representing

the nonnormalized expected number of intersections for all
FRPFMs together (sum of equation (4) over all FRPFMs).
After multiplication by transect area WH to compensate for
the geometric scaling, a normalized trace density �norm is
obtained as

�norm ¼ �j
WH

�Nj

¼ W

Nwell�tjcos�j
¼ 1

Nwell��cos#
: (13)

The second expression applies when �j and �tj are constant
in space, and all Nwell FRPFMs are of equal length H. The
final equality explores the geometric scaling relationships
to express �norm in terms of normalized trace length and
orientation. Normalization to �Nj¼ 1 is convenient because
it allows application of simulation results to ��j from equa-
tion (6), which eliminates NPFM in equation (7) as a vari-
able. Normalization to q�j ¼ qj further eliminates �qj, and
qj¼ constant (e.g., one) reduces the problem to estimating
the cumulative trace length inside a transect from the num-
ber and orientations of intersections observed along the
FRPFMs. Note that the particular value of qj adopted does
not affect the dimensionless mean estimation error �e/�Q or
the dimensionless uncertainty measure CVe used in the
sequel. Relationships for generalizing normalized Monte
Carlo simulation results to arbitrary values of NPFM and vari-
ability in qj and �qj are given subsequently.

3.3. Simulation Results Under Normalized Conditions

3.3.1. Evaluation of Estimator Unbiasedness
[31] Using the normalized conditions from above with a

single FRPFM centered in a transect, Figure 5 shows four

Figure 5. Arbitrary examples of convergence behavior of
mean relative estimation error �e/�Q toward zero, as the
number of realizations M increases (validation of unbiased-
ness). Chart is for Nwell¼ 1 and normalized conditions, i.e.,
W¼H¼�Nj¼ qj¼ q�j ¼ 1. Normalized trace length (equa-
tion (11)) and orientation (equation (12)) are constant for
each case depicted and equal to � ¼ {0.5, 1, 1.5, 2} and
#¼ {22.5�, 0�, 67.5�, 45�}.
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arbitrary examples of how the mean relative estimation
error �e/�Q converges toward zero as M grows. For each
graph, trace density, length, and orientation are kept con-
stant (across space as well as across realizations). The same
convergence behavior (although not shown for brevity) is
observed for all other scenarios investigated in subsequent
figures. This validates the unbiasedness of estimator ��j of
equation (6) for qj¼ q�j ¼ constant. Consequently, since
�qj is independent of qj and of unit expectation, and by the
same reasoning leading from ��j to Q� in equation (7) (i.e.,
additivity of true discharges, discharge estimates, and Pois-
son processes), this also validates the unbiasedness of Q�

with respect to true discharge Q from equation (1). The
unbiasedness reflects that the expectations of equations (1)
and (2) are identical, i.e., on average the trace portions
inside the transect, which pertain to traces with midpoints
outside the transect (Figure 3a), convey the same discharge
as the trace portions outside the transect, which pertain to
traces with midpoints inside the transect (Figure 3b). Since
a transect of arbitrary shape may always be decomposed
into a sum of arbitrarily small rectangles, this conclusion
may be further generalized to arbitrary transect shapes.
3.3.2. Evaluation of Discharge Estimation Error

[32] For the same normalized conditions and no spatial
trends in normalized trace density �norm, normalized trace
length ��, or trace average fluxes �q, Figure 6a represents
the dimensionless estimation uncertainty in terms of a
squared coefficient of error variation CV2

e¼ �2
e/�

2
Q

obtained from equations (9) and (10) for a single FRPFM
and M¼ 50,000. Bold continuous lines correspond to con-
stant trace length, while dashed lines correspond to uniform
(bounded between zero and 2��) and thin continuous lines
to exponential trace length distributions. Results for log-
normal trace length distributions of CV¼ 0.5 and 1 are
almost identical to those of uniform (CV¼ 0.58) and expo-
nential (CV¼ 1) distributions, respectively (graphs not
shown). Overall, it is seen that CV2

e decreases as traces
become longer, which may be attributed to a higher degree
of spatial continuity (less variability) between the measure-
ment location (FRPFM) and the unsampled portion of the
transect. Due to the same reasoning and in combination
with the horizontally aligned transect, CV2

e increases as
trace orientation deviates from the horizontal direction.

[33] For the distributions investigated it may also be con-
sistently observed from Figure 6a that CV2

e for constant
trace lengths (CV2

e,const hereafter) is always equal or larger
than CV2

e for random trace lengths (CV2
e,rand hereafter). In

fact, denoting the probability distribution of � for a given #
by pdf(�) it can be shown that (Appendix A)

CV 2
e;rand ¼

1

��

Z1
0

CV 2
e;const pdf �ð Þ�d�; (14)

which remains valid in the presence of spatially variable
density and spatially variable trace length expectation (�
and �� are then taken with respect to some reference point).
Equation (14) reflects that CV2

e,rand is nothing but a
weighted and rescaled average of CV2

e,const. The weighting
function pdf(�)� accounts for the likeliness of a trace length
� to occur and compensates for the inversely proportional
dependency of trace density on trace length used in Figure 6

Figure 6. CV2
e as a function of normalized trace length

under different scenarios and for M¼ 50,000. (a) No spatial
trends in �norm, ��, or �q and trace length constant (bold con-
tinuous), uniformly distributed (dashed), and exponentially
distributed (thin continuous). Squares are for constant trace
length and #¼ 89�, and circles indicate the resolution used for
��. (b) No spatial trends in �norm, ��, or �q and uniformly
spaced wells. Constant trace length � ¼�� and bold dots are
for practical example. (c) No spatial trend in �q, constant trace
length � ¼��, and five irregularly spaced FRPFMs (locations
shown as dashed lines in upper right corner). Dashed graphs
are for no spatial trend in ��. Bold continuous lines are for
five evenly spaced FRPFMs given for comparison (as in (b)).
For linearly varying trace density (from zero to a maximum
value over simulation domain), graphs fall on top of bold con-
tinuous and dashed lines. Thin continuous lines correspond to
linearly varying trace length � ¼�� (vertically and horizontally
from zero to a maximum value over simulation domain with
� on abscissa at center of transect). Circles indicate CV2

e,max

as obtained from the first expression of equation (18).
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(due to normalization of equation (13)). The factor � implies
that lower values of CV2

e,const corresponding to longer traces
receive larger weights leading to CV2

e,rand<CV2
e,const for a

given ��. It is surmised that this relationship holds in rather
general terms for symmetric and positively skewed (long tail
to the right) trace length distributions. This means that
CV2

e¼CV2
e,const may be used as a conservative worst case

value (upper bound) in typical practical scenarios, where
knowledge about trace length distributions is limited. The
squares in Figure 6a show that CV2

e,const converges to one as
# approaches 90� (vertical traces). In this case CV2

e,const is
not a function of � anymore, and equation (14) immediately
leads to CV2

e,rand¼CV2
e,const for arbitrary trace length distri-

butions. In what follows attention is limited to � ¼��, which
may follow a smooth spatial trend, however, and the notation
CV2

e is resumed as an abbreviation for CV2
e,const.

[34] Figure 6b represents some results for CV2
e (i.e.,

constant � ¼��) and evenly spaced FRPFMs in a rectangu-
lar transect (i.e., !k¼ 1/Nwell), where �norm, ��, and �q are
again constant across the transect. It is seen that CV2

e

decreases as the number of monitoring wells increases and
that CV2

e is not monotonic any more with � . Due to the
effect of correlation between the numbers of intersections
at nearby FRPFMs, local minima occur, where horizontal
projections of trace lengths reach multiples of well spacing
(i.e., single traces begin to intersect two or more FRPFMs).
However, by equation (14) these minima are smoothed out
if trace length is random. Note in this context that it is gen-
erally not correct to divide a transect with multiple observa-
tion wells into portions, which contain a single well each,
and to compute (e.g., from Figure 6a) and sum the estima-
tion error variances for all portions. The reason for this is
possible correlation between estimation errors of neighbor-
ing transect portions and possible underestimation of total
estimation uncertainty.

[35] The dashed curves in Figure 6c represent examples
of CV2

e for five vertical, but irregularly spaced, FRPFMs
(illustrated by dashed lines in upper right corner) and spa-
tially constant �norm, ��, and �q. The bold continuous lines
are given for comparison and correspond to the same sce-
nario, but even well spacing (as considered in Figure 6b).
For all cases shown, a linear trend in trace density from
zero to some maximum value over the simulation domain
(as defined in section 3.1) does not affect the graphs of
CVe. Allowing trace length to follow the same spatial trend
function (but keeping � constant over realizations) yields
the thin continuous graphs, which also closely follow the
results for stationary conditions except for smoothing of
local extrema. The same behavior is observed for other
configurations investigated (e.g., nonsymmetric FRPFM
arrangements), but not shown here for brevity. In general,
this leads to the conclusion that even well spacing performs
best in terms of minimizing CV2

e.

3.4. Generalization of Results to Nonnormalized
Conditions

[36] The observed unbiasedness of the discharge estima-
tor under normalized conditions has already been general-
ized to arbitrary conditions by the argumentation above. In
contrast, the estimation uncertainty contained in CV2

e is
only due to geometric factors, such as trace orientation and
the spatial randomness of trace locations and lengths.

Uncertainty due to flux variability between and within
traces as well as due to the measurement errors is still to be
included. Since graphs of CV2

e in Figure 6 are for an
expected number of trace intersections �Nj¼ 1, values of
CV2

e may be directly applied to ��j from equation (6) for
arbitrary q�j ¼ qj (i.e., �qj¼ 1 as used for computation of
CV2

e). That is, charts in Figure 6 are normalized such that
a specific value of CV2

ej may be applied to a particular
intersection of flux qj and orientation �j recorded on a
FRPFM to deliver an estimation error variance of
�2

ej¼CV2
ej�

2
j, where �j ¼ qjAT!k=Lkcos�j in analogy to

equation (6). Now allowing for �qj 6¼ 1 and denoting its
CV by CV�, it is known that �qj causes an additional var-
iance of CV2

��
2
j in estimator ��j , while not affecting the

true discharge. Since �qj represents within-trace flux vari-
ability and FRPFM measurement errors, it is also independ-
ent of all other processes involved, and its variance may be
simply summed to the estimation error variance for �qj¼ 1
giving a generalized �2

ej¼ �2
j(CV2

ejþCV2
�) for a dis-

charge estimate based on a single intersection (equation
(6)). Moreover, since CV2

ej is computed for the exact num-
ber and arrangement of FRPFMs in a transect, it accounts
for possible correlations between discharge estimates (and
hence estimation errors) from neighboring FRPFMs. Thus,
the same principle of additivity of discharges and Poisson
processes that led from equation (6) to equation (7) may be
applied. In combination with �qj stemming from an inde-
pendent process, this means that the estimation error var-
iances for single intersections may be added up to a total

discharge estimation error variance �2
e;PFM ¼

XNPFM

j¼1
�2

ej of

Q� resulting as

�2
e;PFM ¼

XNPFM

j¼1
�2

j ðCV 2
ej þ CV 2

�Þ; (15)

where subscript ‘‘PFM’’ with �2
e indicates validity for all

traces in the transect. However, as opposed to equation (7),
direct evaluation of equation (15) is complicated by three
factors: (1) although measured ��j are unbiased estimates of
�j, �

�2
j are not unbiased estimates of �2

j (estimation of �j�j

by ��j �
�
j violates the condition of uncorrelatedness between

unbiased estimators ��j and��j , or in other words, the expect-
ations of ��2j and �2

j are not the same); (2) CV� is
unknown because of unknown magnitude of within-trace
flux variability ; and (3) CV2

ej depends on generally
unknown trace length parameters.

3.5. Upper Uncertainty Bounds

[37] One way to overcome this problem is to limit atten-
tion to trace sets of constant orientation (all other variables
including fluxes remain random), for which the subscript
‘‘set’’ is used in the sequel. Note that grouping fractures or
traces into sets of (approximately) constant orientation is a
common procedure in fractured rock characterization.
Thus, as derived in Appendix B, a CV2

e,set for set discharge
uncertainty may be obtained as

CV 2
e;set ¼

1þ CV 2
�

� ��
CV 2

e þ CV 2
�

�
Nset

; (16)
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where Nset is the number of intersections caused by the
trace set, CVe is the normalized estimation uncertainty for
the trace set orientation, CV� is the variability of trace aver-
age fluxes �j, and CV� is the variability �qj of fluxes
within traces of the set including random measurement
errors. Similar to equation (15), evaluation of equation (16)
is still complicated in practice by the fact that CV�, CVe,
and CV� have to be known. However, as further shown in
Appendix B an upper bound of CV2

e,set may be found as

CV 2
e;set �

1þ CV 2
e þ CV 2

��

� �2

4Nset
; (17)

where CV�� is the variability of FRPFM observed fluxes ��j .
Intuitively speaking, this means that while the individual
magnitudes of CV2

� and CV2
� in equation (16) are not

known in field situations, CV2
�� is in fact obtained by FRPFM

measurements and allows finding the upper bound of CV2
e,set

in equation (17). While Nset is also known from FRPFM
measurements, the remaining problem is to determine CVe if
properties of trace length distribution are not available.

[38] Helpful in this respect is Figure 6, which illustrates
that CVe consistently approaches a maximum value CVe,max

if the trace length expectation �� goes to zero. By equation
(14) CVe,max is independent of a particular trace length dis-
tribution (i.e., CV2

e,rand¼CV2
e,const), since with �� the vari-

ability in � also has to go to zero to maintain nonnegativity.
As derived in Appendix C CVe,max may be found from

CV 2
e;max ¼ 1þ CV 0

2
!=L ¼

1

NPFM

XNwell

k¼1

Nk
!k

Lk

� �2

1

NPFM

XNwell

k¼1

Nk
!k

Lk

 !2 ; (18)

where CV 02!=L denotes the CV of the ratio !k/Lk after
weighting by the expected numbers of intersections per
FRPFM. The first equality is validated by the circles on the
ordinate of Figure 6c and for further cases investigated, but
not shown for brevity. The last expression in equation (18)
is important for practice, as it allows estimating CV2

e,max

from FRPFM measured parameters. It inherently accounts
for possible spatial trends in trace density and/or length
through the observed number of intersections Nk per
FRPFM. In the absence of information about trace length
for determination of CVe from the Monte Carlo simulation
under normalized conditions, CVe,max may be used instead
of CVe in equation (16) or (17) to obtain a conservative
upper bound of uncertainty about a trace set discharge esti-
mate from equation (7). The only requirement for evalua-
tion of equation (17) is then that Nset be large enough for a
reliable determination of set specific CV2

��.
[39] Since CVe,max does not depend on trace orientation,

it may also be directly plugged into equation (15) instead
of CVej, and by the same manipulations leading to equation
(17), a general upper bound for discharge uncertainty inde-
pendent of individual trace orientations is obtained as

CV 2
e;PFM �

1þ CV 2
e;max þ CV 2

��

� �2

4NPFM
�

1þ CV 2
�� þ

CV 4
��

4

NPFM
; (19)

where the final equality is exact when !k/Lk¼ constant
(CVe,max¼ 1) as it is the case for evenly spaced FRPFMs
of equal lengths. However, it is expected that the contribu-
tion of variability in !k/Lk through the term CV 02!=L in
equation (18) is rather negligible with respect to the trans-
formed flux variability CV 2

��, such that the final equality in
equation (19) may be regarded as an accurate approxima-
tion in general. For the configuration of Figure 6c
CV2

e,max¼ 1.18, for example, and the approximation errors
amount to 6% and 3% for CV�� ¼ 1 and 2, respectively.

[40] Of considerable interest are also the capabilities of
equations (16), (17), and (19) to predict uncertainty reduc-
tion due to additional sampling. For example, given
CV2

e,PFM is the upper uncertainty bound obtained for NPFM

intersections at Nwell FRPFMs, each additional FRPFM in-
stalled may be expected to increase NPFM by NPFM/Nwell

intersections (assuming stationary conditions across the
transect). Doubling Nwell, for instance, may be expected to
double NPFM and halve CV2

e,PFM (i.e., reduce confidence
interval width by a factor of

ffiffiffi
2
p

) under the hypothesis that
��� and CV2

�� are not significantly affected by the addi-
tional sampling. Since the worst case scenario occurs when
traces are very short, such that spatial correlations among
measured fluxes and with transect discharge are eliminated,
this result is identical to the ‘‘standard error equation’’ for
mean estimates in classical statistics for identically and in-
dependently distributed random variables. Future FRPFM
sampling locations may be optimized by attempting to min-
imize CVe,PFM through (1) minimizing CVe,max in equation
(18) by locating FRPFMs as uniformly as possible, and
through (2) locating additional FRPFMs in areas of high
probability of intersection to maximize NPFM.

4. Validation and Example

[41] This section assumes trace properties as well as CV�

and CV� are known, such that equation (16) may be vali-
dated. Shown in Figures 7 and 8 are examples of outcomes

Figure 7. CV2
e,set for Nwell¼ 1 and #¼ 0 as a function of

constant trace length � ¼�� and for different combinations
of CV� (variability of trace average fluxes) and CV� (vari-
ability of within-trace fluxes plus FRPFM measurement
error). Bold line with circles is from Figure 6a; simple bold
lines are from equation (16) with Nset¼ 1; and thin lines
are from running direct Monte Carlo simulations with
�Nj¼ 1 and the values of CV� and CV� indicated
(M¼ 5000). No spatial trends in �norm, �� or �q.
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of equation (16) (bold lines) in comparison to results from
direct (i.e., not normalized) Monte Carlo simulation (thin
lines). Figure 7 is for a single vertical FRPFM centered
within a transect and for different combinations of CV� and
CV�. Trace orientation is kept constant at #¼ 0 and
Nset¼ 1. In Figure 8 #¼645� with CV�¼CV�¼ 1, where
FRPFMs are evenly spaced with Nwell¼ {2, 5, 10} and
expected number of intersections �Nj¼ {5, 10, 20} from
top-down. Different linear trends in trace density or trace
length are applied to each case. Figure 9 uses the same pa-
rameters and trend functions as Figure 8, except for an
additional bell-shaped trend function superimposed on
trace average fluxes to generically emulate a contaminant

plume. Without loss of generality, this only aims at repro-
ducing the most fundamental qualitative features of a con-
taminant plume (decreasing fluxes from center to
periphery) and does not attempt to resemble a fractured
rock plume in all complexity. In the normalized transect
centered at the origin of the coordinate system, this trend
function is chosen as exp[�20(�2

xþ �2
y)], which is a sim-

ple smooth function with a maximum at the origin that
decays to less than 1% of its peak value near the transect
limits. For all traces the trend function is evaluated at their
midpoints and used to multiply their trace average fluxes qj

before evaluating equations (8)–(10). The presence of a
plume significantly increases the variability in measured
fluxes (compare example below).

[42] In all cases, convergence of Monte Carlo simulation
results with increasing number of realizations toward equa-
tion (16) is confirmed. It is observed, however, that the
number M¼ 50,000 of realizations used in each data point
of Figure 9, for example, may still be too small if Nset is
small in combination with large CV� and CV�. This is
reflected by the variability in the thin lines about the bold
lines. Equation (16), hence, also represents an effective
shortcut to otherwise lengthy (at the order of 30 min for
some charts) numerical computations, especially for long
traces (large simulation domain) and large flux variability
(slow convergence). Figures 7–9 use a constant trace length
� ¼�� over realizations, and the conclusions may be gener-
alized to other trace length distributions by applying equa-
tion (14) to CVe before evaluating equation (16).
Validation of equation (14) was performed separately using
graphs from Figure 6a, but results are not shown for brev-
ity. Similar as with equation (5), however, it is pointed out
that the measured CV�� has to reliably reflect the actual
degree of flux variability over the transect in order to avoid
uncontrolled biases in discharge and uncertainty estimates.
This may be warranted by deploying a sufficient number of
evenly spaced FRPFMs. Alternatively, for unevenly spaced
FRPFMs, the constants !k may again be regarded as a kind
of declustering weights, which work toward achieving this
representativeness. A distinct feature in Figure 9 is the
increase in CVe,set with longer traces. This was found to be
a pure consequence of the trend function imposed on fluxes
and the fact that trace average flux variability CV� inside
the transect increases with trace length (traces further out-
side the transect may still contribute to Q and/or Q�, thus
increasing the degree of variability in the transect).

[43] In order to illustrate a practical application of the
present results and as a further validation, an example prob-
lem for a hypothetical field situation is presented. Table 1
summarizes the relevant parameters used, and Figure 4b
illustrates one out of 5000 realizations used with a transect
of 5 m � 20 m and five evenly spaced FRPFMs. Note the
fact that larger �t associated with larger �q implies positive
correlation between trace length and trace average flux
when regarding both trace sets together. Table 2 considers
water discharge (i.e., assuming no spatial trend in fluxes)
and summarizes results for each trace set separately as well
as for the combination of both. Equations (8)–(10) are used
to validate unbiasedness (�e/�Q � 1) and to assess ‘‘true’’
estimation uncertainty denoted by CVe,sim (i.e., error CV
from simulation for nonnormalized conditions). To all real-
izations, each of which could correspond to actual field and

Figure 9. Same as Figure 8, but including a bell-shaped
trend function (generic plume), which increases magnitude
of between-trace flux variability (M¼ 50,000).

Figure 8. CV2
e,set for evenly spaced wells, CV�¼CV�¼ 1

and #¼645� as a function of constant trace length � ¼��.
(top) Nwell¼ 2, �Nj¼ 5, and linear vertical trend in trace den-
sity. (center) Nwell¼ 5, �Nj¼ 10, and linear horizontal trend
in trace density. (bottom) Nwell¼ 10, �Nj¼ 20, and linear
vertical trend in trace length. Bold continuous lines are from
CV2

e (similar to Figure 6b) in combination with equation
(16). Thin continuous lines are from the Monte Carlo simula-
tion directly using the respective parameters and M¼ 5000.
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sampling conditions at a site, equations (16), (17), and (19)
are also applied, and the outcomes are reported as averages
over all realizations. CVe,PFM from equation (19) only
requires FRPFM measurable parameters CV�� and NPFM

and correctly delivers upper uncertainty bounds on the dis-
charge estimates (CVe,PFM>CVe,sim). If additional infor-
mation is available regarding trace lengths (e.g., from
nearby outcrops), CVe may be determined and used in
equation (17) to tighten the upper uncertainty bounds. In
the less likely event of given knowledge about the distribu-
tion of flux variability between and within traces, equation
(16) may be evaluated, which is seen to closely approxi-
mate CVe,sim in all cases. It is further evident that the upper
uncertainty bounds for trace set 2 are tighter (i.e., closer to
the ‘‘true’’ value CVe,sim) than those of trace set 1, which is
due to a larger value of CVe and more ‘‘closeness’’ to the
worst case scenario. All of the above observations are con-
firmed by Table 3, which corresponds to the same scenario
of Tables 1 and 2, except for the presence of a bell-shaped
trend in trace average fluxes as used with Figure 9 (note
that this also applies to trends in trace orientation, since by
equation (6), it does not matter whether a trend in �� is due
to a trend in q or �). If this trend function is given the units
of contaminant concentration, then q and q� become con-
taminant mass fluxes with significantly higher CVs (com-
pare CV� and CV�� between Tables 2 and 3), which further
propagates into larger discharge uncertainties.

5. Summary and Conclusion

[44] The present work develops and validates an estima-
tor for water and/or contaminant discharges across transects
(control planes) in fractured rock aquifers. The method is
based on FRPFM measurements of local fracture fluxes

along monitoring wells contained inside a transect. Fracture
traces (i.e., intersections of fracture planes with the transect
plane) are conceptualized as straight lines of random loca-
tion, length, and orientation. The components contributing
to variability in measured fluxes are due to (1) smooth trend
functions (e.g., plume shape), (2) variability of trace aver-
age fluxes, (3) variability of local fluxes within traces, and
(4) random measurement errors. The estimator Q� (equa-
tion (7)) only requires measured trace fluxes and orienta-
tions and is found to be unbiased under quite general
conditions including the presence of linear trends in trace
density or trace length across the transect. Particular knowl-
edge about trace density and random trace length proper-
ties, however, is not required for estimating transect
discharge. Discharge estimation uncertainty is derived in
terms of a distribution independent error CV by using a nu-
merical Monte Carlo simulation approach under normal-
ized conditions with subsequent analytical generalization.
Uncertainty is found to depend on generally unknown trace
length distributions (especially trace length expectations)
and the relative contributions of between- and within-trace
flux variabilities (equation (16)). For practical use, an equa-
tion is developed, which delivers an upper bound for dis-
charge uncertainty based on the FRPFM measurable
variables only (equation (19)). Equation (16) is success-
fully validated against direct Monte Carlo simulation
results for a variety of scenarios including multiple vertical
and unevenly spaced FRPFMs and the presence or not of a
bell-shaped trend function in fluxes (generic plume exam-
ple) across a transect. An example problem further demon-
strates the application and performance of the discharge
estimator and its equations for uncertainty assessment.

[45] The approach, even though partly numerically
based, does not involve any hydromechanical flow or

Table 1. Parameters for Example Problem With Illustration of a Single Realization Given in Figure 4ba

Trace Set � (1/m2) �t
b (m) �c (�) �q

d (m2/d) CV�
d CV�

d ��
e #e(�) �N

f CVe
g

1 0.15 10 �35/�25 0.3 0.5 0.5 1.1 �67 32.5 0.40
2 2 1 20/40 0.1 0.75 0.5 0.1 67 43.3 0.89

aNo spatial trends in trace density or mean trace length.
bExponential distributions.
cMin/max of uniform distributions.
dLog-normal distributions.
eFor average � from equations (11) and (12).
fFrom applying equation (4) to each FRPFM and summation.
gFrom dots in Figure 6b (for constant trace length) and taking square root.

Table 2. Results of Example Problem Defined in Table 1 and Figure 4b for Water Discharge (No Spatial Trend in Fluxes) Based on
5000 Realizationsa

Trace Set CV� CV��
b �Q

c (m3/d) �e/�Q
c CVe,sim

c CVe,PFM
d CVe,set

e CVe,set
f

1 0.48 0.71 44.9 �0.0003 0.12 0.23 0.15 0.13
2 0.72 0.91 20.0 0.003 0.18 0.22 0.21 0.20

1þ 2 0.80 1.00 64.9 0.0007 0.10 0.18 0.12g 0.11g

aCVs are computed for each realization and then averaged over all realizations.
bUsing equation (6).
cFrom equations (8)–(10) without normalization of simulation parameters.
dFrom equation (19).
eFrom equation (17).
fFrom equation (16).
gUsing [(Q

�

1CVe,set,1)2þ (Q
�

2CVe,set,2)2]1/2/(Q
�

1þQ
�

2) to combine sets and subsequent averaging over all realizations.
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transport modeling. It rather takes advantage of directly
measured fracture fluxes (readily integrated over fracture
aperture) produced by the in situ hydrogeological condi-
tions. Consequently, fundamental parameters such as frac-
ture aperture or piezometric gradient are irrelevant.
However, it is a fundamental requirement that sufficient
fracture fluxes be sampled, such that measured flux vari-
ability CV�� reliably represents the actual degree of flux
variability across the transect. This condition may be veri-
fied by observing no further increase in CV�� as the number
of sampled fluxes grows. Assuming an observed value of
CV�� ¼ 1 and a target value of CVe,PFM< 0.3 (i.e., the
interval of plus/minus one standard deviation equal to 30%
of the discharge estimate contains the true discharge with a
probability of larger than 68% under an assumption of nor-
mality), equation (19) shows that NPFM	 25 trace flux
measurements (intersections) are necessary. For CVq� ¼ 2
the required NPFM would increase to 100, which may again
be lowered if information about average trace length (or a
lower bound thereof) is available, for example. Equations
(6) and (19) also demonstrate that a number of vertical
FRPFMs are not appropriate for estimating discharges
through near vertical trace sets, where cos �j is very small,
thus inflating CV�� and at the same time limiting NPFM.

While not discussed here, it appears possible, however, to
apply the present approach to nonvertical and nonparallel
FRPFMs to circumvent this problem. Finally, results are
directly applicable to other borehole investigation methods,
which provide measurements of local fracture fluxes and
orientations (e.g., visual or high-resolution thermal detec-
tion of trace locations and orientations for subsequent per-
formance of a localized borehole dilution test) [Pehme
et al., 2010; Novakowski et al., 2006]. If the measured mag-
nitudes are not fluxes, but contaminant concentrations (e.g.,
from the method of Cherry et al. [2007]), then the present
approach allows estimating the transect average concentra-
tion associated with a respective uncertainty bound (this
generally holds for any linearly averaging parameter).

Appendix A: Derivation of CVe,rand (Equation (14))

[46] Denoting the probability distribution of � for a given
# by pdf(�) and exploring additivity of variances of Poisson
processes leads to a variance �2

e,rand of

�2
e;rand ¼

Z1
0

�2
e;const

pdf �ð Þ
�norm

d�

Z1
0

pdf �ð Þ
�norm

d�

¼

Z1
0

CV 2
e;const�

2
Qaj;const pdf �ð Þ�d�

Z1
0

pdf �ð Þ�d�

;

(A1)

where �2
e,const/�norm¼CV2

e,const�
2
Qaj,const/�norm is the esti-

mation error variance for a constant trace length and unit
normalized density (instead of unit expectation of intersec-
tion). For the final equality, use is also made of the last
expression of equation (13) with �� ¼ � . The integral in the
denominator of the first equality in equation (A1) repre-
sents the expected number of intersections for unit normal-
ized density and serves to rescale the numerator, such that
�2

e,rand again applies to a unit expectation of intersection
(instead of unit normalized density). The constant number
of intersections applied to arrive at equation (13) further
implies that

R
Lk
�norm �dL ¼ const for each FRPFM, such

that
R

AT
�norm �dA ¼ const in equation (5). Equation (3)

then shows that �Qaj,const is not a function of � under nor-
malized conditions, and in analogy to equation (A1)
(except for using additivity of Poisson expectations), this
leads to

�Qaj;rand ¼

Z1
0

�Qaj;const

pdf �ð Þ
�norm

d�

Z1
0

pdf �ð Þ
�norm

d�

¼ �Qaj;const : (A2)

Division of equation (A1) by the square of equation
(A2) leads to CV2

e,rand in equation (14), where

�� ¼
R1
0

pdf �ð Þ�d� .

Appendix B: Derivation of CVe,set (Equations (16)
and (17))

[47] For a trace set of constant orientation, CV2
ej in equa-

tion (15) reduces to a constant value CV2
e, and an estimation

error variance �2
e,set of Nset intersections may be written as

�2
e;set ¼ CV 2

e þ CV 2
�

� �XNset

j¼1
�2

j . Using �� and CV� for

expectation and CV of all �j in a set, the expectation of �2
j

is known as �2
� 1þ CV 2

�

� �
. For a given Nset this translates

into an expectation of �2
e,set as Nset�

2
� 1þ CV 2

�

� �
CV 2

eþ
�

CV 2
�Þ. At the same time, an estimator Q�set from equation

(7) possesses the expectation Nset���, where ��
� is the ex-

pectation of ��j from applying equation (6) to all measured
fluxed of the trace set. Knowing that ��� ¼�� and dividing
the expectation of �2

e,set by the squared expectation of Q�set

gives equation (16). Hereby, it is interesting to note that an
arbitrary number of additional trace intersections with zero
fluxes does not affect �2

e,set nor Q�set, such that the synthetic
addition of such ‘‘dummy data’’ does not affect the validity

Table 3. Results of Example Problem Defined in Table 1 and Figure 4b for Contaminant Discharge (With Same Spatial Trend in Fluxes
as Used With Figure 9 in g/m3) Based on 5000 Realizationsa

Trace Set CV� CV��
b �Q (g/d)c �e/�Q

c CVe,sim
c CVe,PFM

d CVe,set
e CVe,set

f

1 2.14 2.29 4.3 0.005 0.27 0.67 0.60 0.27
2 1.84 1.99 3.1 0.005 0.31 0.47 0.47 0.34

1þ 2 2.18 2.37 7.4 0.005 0.21 0.45 0.41g 0.22g

aFootnotes as in Table 2.
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of equations (7) and (16). Furthermore, exploring that ��j¼
�j�qj, where �j and �qj are independent, a CV of measured
and transformed fluxes ��j is obtained as CV2

�� ¼
CV2

�þCV2
�. Using this equality as a constraint, equation

(16) may be maximized by setting 1þCV2
�¼

CV2
eþCV2

� (given the sum of two factors, their product is
maximized when the factors are equal) to arrive at the upper
bound for CVe,set given in equation (17).

Appendix C: Derivation of CVe,max (Equation (18))

[48] By definition of the estimation error em¼Q� �Q in
section 3.1, the estimation error variance of equation (9) is
known to be equal to

�2
e ¼ �2

Q� þ �2
Q � 2Cov Q�;Qð Þ; (C1)

where �2
Q� and �2

Q are the variances of Q� and Q, while
Cov(Q�,Q) is the respective covariance. If expected trace
length �t approaches zero, the difference between equations
(1) and (2) vanishes, such that �2

Q becomes equal to the var-
iance �2

Qa of approximation Qa. For a normalized transect
and assuming spatially constant density and trace length pa-
rameters, the variance of trace midpoints in the transect is
AT�norm, such that �2

Qa¼AT�norm�
2
�q

2. Knowing from
equation (13) that �norm�� ¼ 1/(Nwell cos #)¼ constant to
maintain unit expectation of intersection, �2

Qa goes to zero
as �� goes to zero. This is valid for arbitrary values of # (or
�) and may be generalized to spatial trends in �norm and ��.
As a consequence, Cov(Q�,Q) also approaches zero, and
equation (C1) reduces to �2

e¼ �2
Q�. For q�j ¼ qj¼ constant

and �j¼ constant, Q� from equation (7) may be written as

Q� ¼
AT q�j
cos�j

XNwell

k¼1

Njk!k

Lk
; (C2)

where !k/Lk is constant for each FRPFM, and Njk is the ran-
dom number of intersections per FRPFM. With this

�2
Q� ¼

AT q�j
cos�j

� �2XNwell

k¼1

�Njk

!k

Lk

� �2

¼
AT q�j
cos�j

� �2

�Nj�
0
!=Lð Þ2 ; (C3)

where use is made of the Poisson property that the variance
of Njk is equal to its expectation �Njk, and �0

!=Lð Þ2 denotes

the average of (!k/Lk)
2 after weighting by �Njk (the prime

indicating the weighting involved and remembering

�Nj ¼
XNwell

k¼1
�Njk). The expectation �Q� of equation (C2)

is found as

�Q� ¼
AT q�j
cos�j

XNwell

k¼1

�Njk

!k

Lk
¼

AT q�j
cos�j

�Nj�
0
!=L; (C4)

where �0!/L is the average of !k/Lk after weighting by �Njk.
Using �Nj¼ 1 (as imposed by normalization in section 3.1)
in equations (C3) and (C4) results in CV 2

e;max ¼ �2
Q�=�

2
Q� ¼

�0
!=Lð Þ2=�

02
!=L and the first expression in equation (18) (note

that �0
!=Lð Þ2 ¼ �

02
!=L þ �0

2
!=L). The second expression in

equation (18) is obtained analogously, except for using the
first expressions of equations (C3) and (C4) after division
of �2

Q� and �Q� by total number of intersections Nset (nor-
malization to single intersection) and substituting �Njk by
its unbiased estimates Njk. In equation (18) we further sub-
stitute NPFM and Nk for Nset and Njk, respectively, which
makes CVe,max valid for all traces (not just one set) and
which implies the assumption that spatial trends in trace
density or trace length are the same for all trace sets (i.e.,
�Njk and �Nk are proportional).
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