% Problem 3
clear;clc;

% Define constants and parameters

R = 8.314; %Universal gas constant (kJ/molK)

temp = [1773 1673 1573 1473 1373 1273 1173 1073 1023]; % Temperatures at which data was collected.
delta = [10~-1 107-1.5 10"-2 107-2.5 10”7-3]; % Range chosen to cover a wide span of experimental data

% Import data obtained experimentally such as that seen in Figure 22.12
dataTable = readtable('Fig2212_data.csv');

% Convert data table into an array.
% Note: you can refer to the table form for column names
dataArray = table2array(dataTable);

% Organize temperature, delta, and p02 data into a structure and assign
% polynomial fits of p02 = f(delta)
for i = 1:length(temp)

num = strcat('T',num2str(temp(i)));
data.(num)(:,1) = dataArray(:,2*i-1); % p02 (atm)
data.(num)(:,2) = dataArray(:,2*i); % delta

% Use this for loop to delete NaN entries from data import caused by
% an unequal number of data points available for each isotherm. This
% will allow for creation of a polynomial fit.
for j = 1:length(data.(num))
if isnan(data.(num)(j,1)) == true
data. (num)(j:length(data.(num)),:)=[];
break
end
end

% Create a polynomial structure and store polynomial fits.
% Choose an order that best fits your data. Here, a fifth order
% polynomial is used.

% Note: the data is fitted in logl@ form to help more accurately fit the
% data.
poly.(num) = polyfit(logle(data.(num)(:,2)),logle(data.(num)(:,1)),5);

R

For each constant value of delta, search each set of temperature data and
check if it contains the current constant delta value.

If so, evaluate the polynomial for that temperature at the current constant
delta to obtain p02 using the polyval function.

SR IN

BN

Store that value as 0.5*log(p02), along with the inverse of the
temperature at which that value was solved. Here, these values are being
% stored in a data structure called ellinghamData.

BN

o

% Note:log(x) = natural logarithm in MATLAB v2020b
for i = 1:length(delta)

k = 1;

numl = strcat('d',num2str(i));

for j = 1l:length(temp)
num2 = strcat('T',num2str(temp(j)));
if delta(i) > min(data.(num2)(:,2)) && delta(i) < max(data.(num2)(:,2))
ellinghamData. (numl)(k,1) 0.5*1og (10 polyval(poly. (num2),logle(delta(i))));
ellinghamData. (numl)(k,2) = 1/temp(j);
k = k+1;

end
end



end

% Plot the data obtained for the ellingham diagram for each constant delta
% value. Inverse temperature will go on the x-axis, while ©.51n(p02) will
% go on the y-axis. Fit a line to each constant delta data set and plot.

% Scale the slope and intercept of the linear fit for each delta

% appropriately and store each in an array.

for i = 1:length(delta)

col = rand(3,1);

num = strcat('d’,num2str(i));

plot(ellinghamData. (num)(:,2),ellinghamData. (num)(:,1), 'o", 'Color',col, 'Handlevisibility', '0ff");
hold on;

polyProp.(num) = polyfit(ellinghamData. (num)(:,2),ellinghamData.(num)(:,1),1);
plot(1./temp,polyval(polyProp.(num),1./temp), " '-", 'Color',col);

H(1)
S(1)

-(polyProp.(num)(1)*R)/1000;
(polyProp.(num)(2)*R);

end

% Plot labels

xlabel('1/T (K~{-1})");

ylabel('1n({\itp}0o_{2}~{1/2})")

legend('\delta=107{-1}", '\delta=10~{-1.5}", '\delta=10~{-2}"', '\delta=10~{-2.5}"', '\delta=10"{-3}")

% Concatinate thermodynamic property arrays and output as a table
output = cat(1,H,S);
array2table(output, 'VariableNames',{'delta=10"-1", 'delta=10"-1.5"', 'delta=10"-2"...
, 'd=107-2.5",'d=10"-3"}, 'RowNames ', { 'Enthalpy (kJ/mol)",'Entropy (3/molK)'})

ans =
2x5 table
delta=10"-1 delta=107-1.5 delta=10"-2 d=10"-2.5 d=10"-3
Enthalpy (k3J/mol) 399.411993399213 443.119281300684 472.56118350642 482.76937807391 483.917465286416
Entropy (3/molK) 164.159749819852 214.416176126595 254.027038394741 284.674518892935 308.785108716772



s=107"

—SU i i i i i
2.5 B 6.5 T 7.5 8

1T (K™Y

Published with MATLAB® R2020b



