
Chapter Problems

Problem 4
Given data arrays of and versus for Ceria, fit a third degree poynomical function suitable for describing

 and as a function of using the _curvefit function from the scipy.optimize library.

NOTE: For this we will use Python and import tabulated data from a .csv file.

Δ (kJ/mol)ho Δ (J/mol ∗K)so δ

Δho Δso δ

In [6]: #Import necessary libraries and data arrays from files.
import numpy as np
import pandas as pd
data1 = pd.read_csv('Change_in_EnthalpyVSDelta.csv')
data2 = pd.read_csv('Change_in_EntropyVSDelta.csv')
delta_h = np.array(data1) #Numpy array [[delta1,delta_h1],[delta2,delta_h2],...]
delta_s = np.array(data2) #Numpy array [[delta1,delta_s1],[delta2,delta_s2],...]

Plot extracted data by slicing the data array in different columns. The first column represents and the second column
represents either or

δ

Δho Δso

In [7]: #Import necessary libraries and plot raw data for better visualization
import matplotlib.pyplot as plt
plt.plot(delta_h[:,0], delta_h[:,1], 'bo', markersize=3, label='Data '+'Δ'+'h_o')
plt.plot(delta_s[:,0], delta_s[:,1], 'g--', markersize=3, label='Data '+'Δ'+'s_o')
plt.xlabel('δ')
plt.ylabel('Δ'+'h_o'+'(kJ/mol)'+' and '+'Δ'+'s_o'+'$(J/molK)$')
plt.legend(loc='center right')
plt.show()

Define a polynomial function poly dependent on delta (d) and the different coefficients of the polynomial (c1,c2,c3,c4)

In [8]: def poly(d,c1,c2,c3,c4):
 return c1*d**3+c2*d**2+c3*d+c4

In [9]: #Import necessary libraries and calculate the polynomial coefficients
from scipy.optimize import curve_fit
coeff1, pcov = curve_fit(poly, delta_h[:,0], delta_h[:,1])
coeff2, pcov = curve_fit(poly, delta_s[:,0], delta_s[:,1])
print('Coefficients for delta_h : ',coeff1)
print('Coefficients for delta_s : ',coeff2)

Plot curve fit polynomial function poly with the obtained coefficients along with the previously plotted raw data to show
comparison

In [10]: d_fit = np.arange(0,0.2,0.001) #Define new array for delta
plt.plot(d_fit, poly(d_fit, *coeff1), 'r', label='Curve fit '+'Δ'+'h_o')
plt.plot(d_fit, poly(d_fit, *coeff2), 'k', label='Curve fit '+'Δ'+'s_o')
plt.plot(delta_h[:,0], delta_h[:,1], 'bo', markersize=3, label='Data '+'Δ'+'h_o')
plt.plot(delta_s[:,0], delta_s[:,1], 'g--', markersize=3, label='Data '+'Δ'+'s_o')
plt.xlabel('δ')
plt.ylabel('Δ'+'h_o'+'(kJ/mol)'+' and '+'Δ'+'s_o'+'$(J/molK)$')
plt.legend(loc='center right')
plt.show()

Solution: and can now be computed as a function of and the curve fit coefficients found, coeff1 and coeff2
respectively

Δho Δso δ

Problem 5
Given a temperature of operation for Ceria and an initial amount of moles of water . Solve for using an
iterative approach.

Background: The partial molar Gibbs free energy for Ceria , which is a function of both nonstoichiometry and temperature, is
expressed as two equations below:

Also, the oxygen partial pressure can be obtained from the reaction equilibrium analysis of the dissociation of . From (1.33) we
recognize that the reaction coordinate is equal to ,

NOTE: For this we will use Python, and import data for the equilibrium constant of formation of water from the NIST-JANAF website.
A curve fitting procedure needs to be applied, similar to Problem 4.

T = 1273K = = 0.1n O,iH2 δf δ

Δgo

Δ (δ,T) = −RT ln (δ,T (1.50)go pO2)1/2

Δ (δ,T) = Δ (δ) − TΔ (δ) (1.51)go ho so

pO2 OH2

ϵ − δδf

= = K OH2

() ∗ϵ
ntotal

pO2
1/2

()
−ϵn O,iH2

ntotal

(− δ) ∗δf pO2
1/2

− (− δ)n O,iH2
δf

=pO2
1/2

− (− δ)n O,iH2
δf

(− δ) ∗δf Kf, OH2

Kf, OH2

In [11]: #Import Equilibrium Constant Data for formation of Water, 1bar, (l,g)
data3 = pd.read_csv('H2O_Equilibrium_Constant.csv')
Kf_H2O = np.array(data3)

Plot extracted data by slicing the data array in different columns. The first column represents while the second column
represents . The data has a linear relationship when plotted with in the x-axis.

T (K)

log()Kf, OH2

1
T

In [12]: #Plot raw data fro better visualization
plt.plot(1/(Kf_H2O[:,0]), Kf_H2O[:,1], 'bo', markersize=3, linewidth=0, label='K_f')
plt.xlabel('$1/T$'+' [K]')
plt.ylabel('log '+'(K_f)')
plt.title('Equilibrium Constant for Formation of Water')
plt.legend()
plt.show()

Define a function named linear dependent on the (x), the slope (m) and the y-intercept (b). Calculate the linear function
coefficients. Then, plot the curve fit function linear with the obtained coefficients along with the previously plotted raw data to
show comparison.

In [13]: def linear(x, m, b):
 return m*x+b

#Calculate the linear function coefficients in the same way as Problem 4
coeff3, pcov = curve_fit(linear, 1/(Kf_H2O[:,0]), Kf_H2O[:,1])
print('Coefficients for Kf : ', coeff3)

In [14]: xfit = np.arange(0,0.0035,0.00005) #Define new array for x
plt.plot(1/(Kf_H2O[:,0]), Kf_H2O[:,1], 'bo', markersize=3, linewidth=0, label='K_f')
plt.plot(xfit, linear(xfit, *coeff3), color='red', label='Curve fit '+'K_f')
plt.xlabel('$1/T$'+' [K]')
plt.ylabel('log '+'(K_f)')
plt.title('Equilibrium Constant for Formation of Water')
plt.legend()
plt.show()

Define functions for the partial molar Gibbs free energy as a function of both nonstoichiometry and temperature, make sure to
replace the expression for oxygen partial pressure into one of the functions. Delta(nonstoichiometry) is represented as .d

In [15]: #Define variables and fixed parameters
R = 0.008314 #(kJ/mol K)
T = 1273 #(K)
df = 0.1 #(moles)
n_H2O = df #(moles)

In [16]: def Gibbs1(d):
 return -R*T*np.log((n_H2O-(df-d))/((df-d)*10**(linear((1/T), *coeff3))))
def Gibbs2(d):
 return poly(d, *coeff1)-poly(d, *coeff2)*T/1000

Trial and error approach. Iteratively input values for delta such that . Modify values in both functions until the
result is approximately the same. If we substract both functions the value should get close to zero when the function values
are the same.

0.0 < δ < δf

In [17]: #Try d=0.08
attempt = Gibbs1(0.08)-Gibbs2(0.08)
print(attempt)

In [18]: #Try d=0.09
attempt = Gibbs1(0.09)-Gibbs2(0.09)
print(attempt)

In [19]: #Try d=0.06
attempt = Gibbs1(0.06)-Gibbs2(0.06)
print(attempt)

In [20]: #Try d=0.05
attempt = Gibbs1(0.05)-Gibbs2(0.05)
print(attempt)

Solution: approximatelyδ = 0.05

Problem 6
Given a temperature of operation for Ceria and an initial amount of moles of water . Solve for and the
yield. Create a solver/minimizer using the minimize function from the scipy.optimize library.

NOTE: For this we will use Python, and remember that , which is the difference between the final and initial nonstoichiometries.

T = 1273K = = 0.1n O,iH2
δf δ H2

= − δH2 δf

Define the function objective , which is the absolute value of the difference between both partial molar Gibbs free energy
expressions, in that way we guarantee the result gets as close possible to zero. The function objective is only dependent on
delta (d), an array with multiple elements. The first element d[0] is the one we will be solving for, while the rest belong to the
different coefficients we previously found.

In [21]: #Import necessary libraries for minimization procedure
from scipy.optimize import minimize
def objective(d):
 return np.abs(((d[1]*d[0]**3+d[2]*d[0]**2+d[3]*d[0]+d[4])-(d[5]*d[0]**3+d[6]*d[0]**2+d[7]*d[0]+d[8
])*T/1000)\
 +(R*T*np.log((n_H2O-(df-d[0]))/((df-d[0])*10**(linear((1/T), *coeff3))))))

When solving for d[0] we do not want to vary any of the other elements from delta (d). Therefore, we are setting every other
element to its respective coefficient value via constraints:

In [22]: con1 = {'type': 'eq', 'fun': lambda d: d[1]-coeff1[0]}
con2 = {'type': 'eq', 'fun': lambda d: d[2]-coeff1[1]}
con3 = {'type': 'eq', 'fun': lambda d: d[3]-coeff1[2]}
con4 = {'type': 'eq', 'fun': lambda d: d[4]-coeff1[3]}
con5 = {'type': 'eq', 'fun': lambda d: d[5]-coeff2[0]}
con6 = {'type': 'eq', 'fun': lambda d: d[6]-coeff2[1]}
con7 = {'type': 'eq', 'fun': lambda d: d[7]-coeff2[2]}
con8 = {'type': 'eq', 'fun': lambda d: d[8]-coeff2[3]}
constraints_d = [con1, con2, con3, con4, con5, con6, con7, con8]

The minimization method we are using, (SLSQP), requires a set of initial guesses and boundaries for every value. Define
those parameters, then minimize the objective function.

In [23]: initial_guess = np.array([0.07, 1, 1, 1, 1, 1, 1, 1, 1])
b = (-50000, 50000)
bounds_d = ((0.0,df-0.0001), b, b, b, b, b, b, b, b)
solution = minimize(objective, initial_guess, method='SLSQP', constraints=constraints_d, options={'dis
p': False}, bounds=bounds_d)
print('Value of Delta is: ', solution.x[0])

In [24]: print("H_2 yield is: ",df-solution.x[0])

Solution: and δ = 0.0472 = 0.0528H2

Problem 7
Given 6 different temperatures of reduction , temperature of oxidation

, and oxygen partial pressure for Ceria. Compute yield to reproduce data from Chueh et al.
Figure 17.a

NOTE: For this we will use Python, and remember that (initial moles of water is equal to the nonstoichiometry after reduction).

= 1573,1673,1773,1873,1973,2073KTH
800K < < 1200KTL = 0.00001pO2 H2

=n O,iH2
δf

Perform minimization procedure to find the nonstoichiometry after reduction (d_red) knowing the relationship in between
, , and given by (1.52):

Define function _objectivered depending only on delta (d) similar to Problem 6. However, the minimization procedure will
repeat using a for loop for every temperature of reduction (T_red). Then, the values of delta (d) will be stored in the array
(d_red) for later use.

pO2 T δ

ln (δ,T = − + (1.52)pO2)1/2 1

T

Δ (δ)ho

R

Δ (δ)so

R

In [25]: #Define variables and fixed parameters
T_red = np.array([2073, 1973, 1873, 1773, 1673, 1573]) #(K)
O_pp = 1e-5
d_red = np.array([])

In [26]: for i in range(0, T_red.size):
 def objective_red(d):
 return np.abs(np.log(O_pp**0.5)+((d[1]*d[0]**3+d[2]*d[0]**2+d[3]*d[0]+d[4])/(T_red[i]*R))\
 -((d[5]*d[0]**3+d[6]*d[0]**2+d[7]*d[0]+d[8])/(1000*R)))

 #Define constraints to their respective coefficients values
 con1 = {'type': 'eq', 'fun': lambda d: d[1]-coeff1[0]}
 con2 = {'type': 'eq', 'fun': lambda d: d[2]-coeff1[1]}
 con3 = {'type': 'eq', 'fun': lambda d: d[3]-coeff1[2]}
 con4 = {'type': 'eq', 'fun': lambda d: d[4]-coeff1[3]}
 con5 = {'type': 'eq', 'fun': lambda d: d[5]-coeff2[0]}
 con6 = {'type': 'eq', 'fun': lambda d: d[6]-coeff2[1]}
 con7 = {'type': 'eq', 'fun': lambda d: d[7]-coeff2[2]}
 con8 = {'type': 'eq', 'fun': lambda d: d[8]-coeff2[3]}
 constraints_red = [con1, con2, con3, con4, con5, con6, con7, con8]

 #Define initial guess and bounds
 ini_guess_red = np.array([0.03, 1, 1, 1, 1, 1, 1, 1, 1])
 b = (-50000, 50000)
 bounds_red = ((0.0001,0.2), b, b, b, b, b, b, b, b)

 #Minimize function objective_red
 sol_red = minimize(objective_red, ini_guess_red, method='SLSQP', constraints=constraints_red, optio
ns={'disp': False}, bounds=bounds_red)
 d_red = np.append(d_red, sol_red.x[0])

Perform minimization procedure to find nonstoichiometry after oxidation (d_ox) similar to Problem 6. Define function
_objectiveox depending only on delta (d). The minimization procedure will repeat using a for loop for different temperatures
of oxidation in the range . Then the values of delta (d) will be stored in the (H_2) array, remembering
that .

800K < < 1200KTox
= −H2 δred δox

In [27]: #Define variables and fixed parameters
n_H2O = d_red*1
T_ox = np.arange(800,1200,10)

In [28]: for ii in range(0, d_red.size-1):
 H_2 = np.array([])
 for i in range(0, T_ox.size):
 def objective_ox(d):
 return np.abs(((d[1]*d[0]**3+d[2]*d[0]**2+d[3]*d[0]+d[4])-(d[5]*d[0]**3+d[6]*d[0]**2+d[7]*d
[0]+d[8])*T_ox[i]/1000)\
 +(R*T_ox[i]*np.log((n_H2O[ii]-(d_red[ii]-d[0]))/((d_red[ii]-d[0])*10**linear((1/T
_ox[i]), *coeff3)))))

 #Constraints will remain the same from reduction
 #Define new initial guesses and bounds
 ini_guess_ox = np.array([0.01, 1, 1, 1, 1, 1, 1, 1, 1])
 bounds_ox = ((0.0,d_red[ii]-0.0001), b, b, b, b, b, b, b, b)

 #Minimize function objective_ox
 sol_ox = minimize(objective_ox, ini_guess_ox, method='SLSQP', constraints=constraints_red, opti
ons={'disp': False}, bounds=bounds_ox)
 H_2 = np.append(H_2, d_red[ii]-sol_ox.x[0])

 #For every T_red plot H_2 productivity as a function of T_ox
 plt.plot(T_ox, H_2, 'r')
 plt.plot(T_ox, np.repeat(d_red[ii], 40), 'b--', linewidth=1)
 plt.xlabel('Oxidation Tempertature, '+' $T_L [K]$')
 plt.ylim(0, 0.2)
 plt.ylabel('H_2'+' Productivity')

#Plot image with labels and text to reproduce original image as accurately as possible
plt.text(1170, 0.182, 'δ_i')
plt.text(810, 0.182, '$T_H=2073 K$')
plt.text(810, 0.16, '$1973 K$')
plt.text(810, 0.105, '$1873 K$')
plt.text(810, 0.065, '$1773 K$')
plt.text(810, 0.042, '$1673 K$')
plt.text(810, 0.024, '$1573 K$')
plt.plot(T_ox, np.repeat(d_red[5], 40), 'b--', linewidth=1)
plt.show()

<Figure size 640x480 with 1 Axes>

Coefficients for delta_h : [-7385.80014712 4017.51492446 -889.65156973 474.07082102]
Coefficients for delta_s : [-42659.14948158 15579.16742436 -2173.31571416 279.33859835]

Coefficients for Kf : [1.31648379e+04 -3.13560258e+00]

-30.502246290666164

-41.151086232985364

-12.975066084019687

-3.0405284425706327

Value of Delta is: 0.0472257161777355

C:\Users\antma\Anaconda3\lib\site-packages\ipykernel_launcher.py:5: RuntimeWarning: divide by zero en
countered in log
 """

H_2 yield is: 0.052774283822264505

C:\Users\antma\Anaconda3\lib\site-packages\ipykernel_launcher.py:6: RuntimeWarning: divide by zero en
countered in log

https://janaf.nist.gov/

	Chapter Problems
	∙ Problem 4
	∙ Problem 5
	∙ Problem 6
	∙ Problem 7

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# Chapter Problems\n",
 "___"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Problem 4 \n",
 "Given data arrays of $\\Delta h_o (kJ/mol)$ and $\\Delta s_o (J/mol*K)$ versus $\\delta$ for Ceria, fit a third degree poynomical function suitable for describing $\\Delta h_o$ and $\\Delta s_o$ as a function of $\\delta$ using the _curve_fit_ function from the _scipy.optimize_ library. \n",
 "\n",
 " \n",
 "**NOTE:** For this we will use Python and import tabulated data from a _.csv_ file."
]
 },
 {
 "cell_type": "code",
 "execution_count": 6,
 "metadata": {},
 "outputs": [],
 "source": [
 "#Import necessary libraries and data arrays from files.\n",
 "import numpy as np\n",
 "import pandas as pd\n",
 "data1 = pd.read_csv('Change_in_EnthalpyVSDelta.csv')\n",
 "data2 = pd.read_csv('Change_in_EntropyVSDelta.csv')\n",
 "delta_h = np.array(data1) #Numpy array [[delta1,delta_h1],[delta2,delta_h2],...]\n",
 "delta_s = np.array(data2) #Numpy array [[delta1,delta_s1],[delta2,delta_s2],...]"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Plot extracted data by slicing the data array in different columns. The first column represents $\\delta$ and the second column represents either $\\Delta h_o$ or $\\Delta s_o$"
]
 },
 {
 "cell_type": "code",
 "execution_count": 7,
 "metadata": {
 "scrolled": true
 },
 "outputs": [
 {
 "data": {
 "text/plain": [
 "<Figure size 640x480 with 1 Axes>"
]
 },
 "metadata": {},
 "output_type": "display_data"
 }
],
 "source": [
 "#Import necessary libraries and plot raw data for better visualization\n",
 "import matplotlib.pyplot as plt\n",
 "plt.plot(delta_h[:,0], delta_h[:,1], 'bo', markersize=3, label='Data '+'$\\Delta$'+'h_o')\n",
 "plt.plot(delta_s[:,0], delta_s[:,1], 'g--', markersize=3, label='Data '+'$\\Delta$'+'s_o')\n",
 "plt.xlabel('$\\delta$')\n",
 "plt.ylabel('$\\Delta$'+'h_o'+'(kJ/mol)'+' and '+'$\\Delta$'+'s_o'+'$(J/molK)$')\n",
 "plt.legend(loc='center right')\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Define a polynomial function _poly_ dependent on delta (__d__) and the different coefficients of the polynomial (__c1,c2,c3,c4__)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 8,
 "metadata": {},
 "outputs": [],
 "source": [
 "def poly(d,c1,c2,c3,c4):\n",
 " return c1*d**3+c2*d**2+c3*d+c4"
]
 },
 {
 "cell_type": "code",
 "execution_count": 9,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Coefficients for delta_h : [-7385.80014712 4017.51492446 -889.65156973 474.07082102]\n",
 "Coefficients for delta_s : [-42659.14948158 15579.16742436 -2173.31571416 279.33859835]\n"
]
 }
],
 "source": [
 "#Import necessary libraries and calculate the polynomial coefficients\n",
 "from scipy.optimize import curve_fit\n",
 "coeff1, pcov = curve_fit(poly, delta_h[:,0], delta_h[:,1])\n",
 "coeff2, pcov = curve_fit(poly, delta_s[:,0], delta_s[:,1])\n",
 "print('Coefficients for delta_h : ',coeff1)\n",
 "print('Coefficients for delta_s : ',coeff2)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Plot curve fit polynomial function _poly_ with the obtained coefficients along with the previously plotted raw data to show comparison"
]
 },
 {
 "cell_type": "code",
 "execution_count": 10,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEICAYAAACqMQjAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3iUZdbA4d/JJCEhBOm9BEIPhARCGRCJFEVFxQKyriirK4usq9jWtioqgl1s6KJ+a0OUIioqKgQCCgFpoYZeJHSCdMiknO+PdwgBkjCBhAlw7ut6r5l56zOgc3jqEVXFGGOMyUuAvwtgjDGm5LIgYYwxJl8WJIwxxuTLgoQxxph8WZAwxhiTr0B/F6AoVapUSSMiIvxdDGOMOa8sWLBgt6pWzuvYBRUkIiIimD9/vr+LYYwx5xUR2ZTfMWtuMsYYky8LEsYYY/JlQcIYY0y+LEgYY4zJlwUJY4wx+bIgYYwxJl8WJIwxxuTLggTAxo3w5JOwYAHY0unGGJPDggTAnDnw0ksQFwf16sGDD8Jvv0FWlr9LZowxfmVBAqBvX9ixA/73P2jRAt59Fzp1glq14J57YMoUyMjwdymNMeackwspM11cXJwWybIc+/fD5MkwYQL8+CMcOgTly8O118JNN0H37hAaevbPMcaYEkBEFqhqXJ7HLEicxpEj8Msv8PXX8N13sHcvlC7tBIprr4WePaFqVQCSkiAxEeLjwe0u2mIYY0xxsSBRVDIyYPp0+PZbmDQJNm8GEWjblqSWA+n6ye14MoXgYCEhwQKFMeb8UFCQsD6JwggKgiuucPosNm2CRYvg2WchO5vEUavwpGeTlSV4jmaROGo1pKf7u8TGGHNWrCZRRJIm7abrTeXwZEAwHhLoirvMMqdZqkcP6NGDpC11rDnKGFPiFFSTuKDySfiT+9pKJMzw9km4s3AffNJpkpo8GSZOJIn2dJVpeAgmOBgSfsrEHV/K38U2xpgCWZAoQm73sRpCKaCn06mtCitXkvjwbjw/BpOFC096BondX8B9xYKcWgYNG/q59MYYcyoLEsVNBJo2Jf4/EDwdPB4l2BVA/HXlIHm1M8QWoH59kloMILH01cT3q437qnL+LbcxxmB9EudUnkNk166Fn38macwGus56zmmOwkNCw3twX1cZunZ1JvaVKePHkhtjLmQlqk9CRFzAfGCLqvYUkY+BzsA+7yn9VTVZRAR4E7gaOOzdv/Bcl7coHW+OyqVBA2jQgMT94JmjzugoERIzL8X99r3w2msQGEhSs7tIrHQz8TdXwn1XMwgO9st3MMZcXPzR3HQ/kAKUzbXvEVUdf9J5VwENvVs74D3v6wUpPh6CgwWPB4KDXcSPvhta/hVmzSLp0zV0HX0nHg0keJqHhAd7OJ3el18Ol11GUkYcib8F2qgpY0yRO6dBQkRqAdcALwAPnub064FP1WkPmyMi5USkuqpuK+5y+oPbDQkJJzdHOTO7E+d3xxPgrDfoCQggseX9uDc8Cj/95IyaIgEPQnBgNgkjluK+s6ktG2KMKRLnejLdCODfQPZJ+18QkSUi8oaIHBsXWhPYnOucVO++E4jIABGZLyLzd+3aVSyFPlfcbnj88VNrA04tA1wuCC4VQPwb18PKlbB9O4m3jsIjpZxRU5mQeO84uOQSuPRSeOIJkt6Yw/Ah6SQl+eUrGWPOc+esJiEiPYGdqrpAROJzHXoc2A4EA6OAR4HnAMnjNqf0sqvqKO91xMXFXTi98LnkXcsAqlYl/t6qBE/E20wVSPxz18DOLJg5k6SXZtI1+z94cBH83FESer+P+8bq0KED1K7tx29kjDlfnMvmpo7AdSJyNRAClBWRz1X1Nu/xdBH5H/Cw93MqkPuXrBaw9ZyVtoTJs9ObkwOI4HZfClwKQOKQdDzPB5GVHYBHIfHrPbjHPuBcWLMmSQ1vJzH0KuJ7XYL79kYQEnLOvo8x5vzglyGw3prEw97RTdVVdZt3NNMbwFFVfUxErgHuxRnd1A54S1XbFnTfkj4E9lxLSnJG0Dq1DEj4ORN3aDIkJTnLiEx9DI8GOUNuA3vgjss4Ho3cbiefhjHmgleihsDmYbSIVMZpXkoGBnr3/4gTINbiDIH9m3+Kd/46tZkqEIiDuDgSD4JnWq7OcPfjuHUYvPcevPEGSbQnsex1xMfsw31FOLRpA61bQ8WKfv5WxphzySbTXaROqWUcW9rc4yHps7V0vachnowAgsVDgnbBzRznwvr1nTSvbdqQFNqFxJ3NiO8RYkNvjTmPlfSahPGDfDvDg4NJ3NkMTzZkAZ6AUBKfmIa782yYPx/mzYO5c0ka+wddGYSHQIKfP0LCFS/jvro8xMZCdLQzwgpLxGTM+c6CxEUsv87wY0Nuj9Uy4q8KBXdXp+rhlfifg3iGhxzvFJ8VhPvn+4/fpH59kmr3cZYayXZ5ayuCu0Neg9aMMSWVBQlzinxrGbnEX1OG4NdzDb395Qmo2x+Sk3O2xGmV8GQKWQTgOZpBYrcXcbsTndpGTAzExJD0ZxObLW5MCWZBwuQpv1pG7uOnBpIaUKMGXH01APFJENxV8aRnE+yC+O5BsO2Ak9nv6NFcs8Uh2JVFwl1jnNVvmzeHevXA5bLmKmP8zIKEOWO+BRIhMVGIjw/A7X4MeAwyM2HVKhKfy8AzrhRZ6sKTBYmjVuEe9aJzcWgoSXVuoeva9/FkBxEcpCR8tRv39VWc5dex/g5jzgULEqZY5RlIAgMhKor4wRA8KVeT1aSnIPwGWLYMli0jcVJzPFkup7nKk0HiDSNwlx0JUVEkVexJ158fwZPl7e/4JRt3J+c/ZwsexhQdCxLGb05tsioNtIW2zpzJ+N4Q3NWbqCkwgPh/tYHDtzkBJFHxZOTq74gfgrvR1yRVvo6uSc/jyQokOFhJ+PYQ7ivLnvBcCyLG+M6ChPGrgpqsjgcRIT7ehdt9I3AjkKu/w6MEu4T4W2rBwaYkzqqGJzPACR7pGST2GI678kfQuDE0bkxS0GV0/b9b8WS6CC7lHXFlgcKYfFmQMCVawWtWibdGEIjbfQ9wz0nBI4D4AS3gqHfV3EmTSNxZGQ+QheA5kkFi95dwt/jBSf4UGQkNGpB0uCWJf9Qj/uqwU4bsWi3EXGxsxrW54BT0Q5409RBde4biyfCOqLrqNdwHpzhpZDdvJknbeUdc5Uoj2/IwREaSpO3p+ua1zkx0q4WYC4jNuDYXlQKbsLqFkTD9WBDJNeIKID2dxMf343nTO0lQhES5HPfSF+Hbb0nMeAgPPXPVQl7G3exbiIiAunUhIoKkIy1JTG1AfM9w3N3Ccp5rNRBzvrIgYS46+QaRUqWI712Z4Pc5nkb24/7g7g9ZWcT/sIfgPoInwzvvo1sgHCkPixfDd9+RlB5LV/7m1ELe9JAQfiXuBrtICr+CrrOfczrTg7JJGLEMd49LoEYNkhaWsuBhSrRCBwkRCcNZzjurGMpjjF/lO9vc5cJ9XeWTaiGP4uTIArKzSfzPITwvhZKVLU4tpNkg3BVHkTi/6vHOdE8WiYO+ws2L3smE0/AQRHBAFgm93naWa69Z01mm3bslLS5dYCCxWoopTqcNEiISAPQF/gq0AdKBUiKyC2c571GquqZYS2nMOXS6EVd5HgsIIP7acIJH5KqFvHE9uK/3dqZ7h/IGuYh/8QYo24jEL+riSQh2JhNmQ+LkI7i/fvqE2x6flR5McEAmCVe+gjv6EFSvDtWqkZTWiK4PtcSTIQQHy/HVfLHgYYqGLzWJ6cBUnDSjy1Q1G0BEKgCXAy+KyERV/bz4imlMyZdfLeTEobyC290WaEt8EwielWsyYcJT0PIh2LIFUlMhNZXE0bXx/FLqeCCZHYx76vOQkQFAIo/hoQVZBDr9JD3fxN3sW2eo76/POE1cgdkkvDgPd5dQqFIFKlUiaUFw/p37FlxMLr4Eie6q6jl5p6ruASYAE0QkqMhLZsx5qKAhuyfvzzuolIaGDZ0NiG8AwTNzBZLJj0K7R+DPP2HbNuKnHSH4EfBkZBHsUuJb7YfMQBKXVjzexJWRReJD3+HGWfLklNrJpUNwN/kTqlQh6VA0Xd+9AU9mgDOTffxeZzJi4Ik/FRZILh6+BIn/cpqscKqaUTTFMebicmYLKQY4GQIrVsTdHBLaHDvuwu1+DuDUJq43/wIV42DXLhLHN8QzLVftZGU13Cv/B7t3k5j9bzzccHwme89XcMtLUKGCUwupXJkk16XeWorLqaU8MQ13e80pExUrkrS8LIkzxILIBcCXIOESkedU9YTGUhEJB/5PVXsXT9GMMeBbIMm/lnKsiSsaiAYgviUEz85VO/lmMLgHOyO4fjlA8I0BeDzZBAcK8f+KgzJPw65dsHOnE2SWVfLWUlx4MrJJfDYxp5YCJ9VUJIOE5oNx19t+YhDZ25TEzZHEd/Dgvizo+LFSpZx7WE2lxDjtZDoRCQQmA1+p6ofefS2Bsd59Txd0/blkk+mM8U2BEw5P8wN9PPWtEhwECR9vxl1nC6SlQVoaw8fW56nJHchSFy6yeL7+//F4mXec43v2kHSk5YkTFul6PD1uWBhJpbvSdfeXeNQ76uvKl3E33gPlykH58iTtbkjixggnwHQKPL4/OdRqL2forCbTqWqmiNwIJIrIVqAm8CTwd1WdegaFcQHzgS2q2lNE6gFfAhWAhUA/VfWISCngU6A1kAbcoqobC/s8Y8ypzmgEV67jx2sp4HbXAerkHI9vBMHTc43y+vxucN+dczzxuQw8zwWSlSV4AgJIvGUU7stm5QSZxBkd8OwKdmoqxzrrf/sIDhw4sZby2fEAc0rtpdl9uGunQvnyx7dy5Uja09hZcqXdUdyXupz9l1wCZcuCywX4FiQvqlqOqha4Ae8BA4FbgB04I52qnu66Au73IPAF8L3381igr/f9+8A93veDgPe97/vi1FoKvHfr1q3VGON/s2erDhvmvOZ1LDRU1eVyXk8+J9/jGRk67MmD6grIVlB1BWTpsL6LVd9/X4ddOV1dkunsJ1OHRX6o2rq1amSkaoUKqgEBOpv2GsohdZGhoRzS2bRXheNbeLjOrnK9hsph55yAozr7imdU//lP1SefVH35ZZ396DcaGpyhroAsDS2VqbPHbFTdvl31yBGfvrsvx/0BmK/5/K760iexCKcxswUQBDQCPhCRpcBSVf3S14AkIrWAa4AXgAdFRIAuwK3eUz4BhngD0/Xe9wDjgXdERLxfyBhTgvm2um/e/xrP93hgIPHXBOZKmxtA/H3R4I4mPjr3KDAX8Z/dBe67jt80O5vEZz14hpZyJjsGBJD4lw9xd5kL+/bB3r2wbx+Jv3bEszNXLWZeGO55bznnZGd7hxxfc3yV4b+8f7w/plQpp6ls73hvU1kmCfHP447c5dRWvDWZru/0ckaPBSkJH250+mTKlYMyZSAg4KyaAouDL0HiUiAZ+BpYDIRyPGhcg9NU5KsRwL+BcO/nisBeVc30fk7Fac7C+7oZcpq89nnP312I5xljSqAz6Yw/tr/guSj5/IAGBBDfI4TgV3IFmH9GgTvqhNOOjwrzdur/8Ai4H3HqGgcPOkOO+x7r2A8g/vF4qFL7eJCZ3h7PvFxBZmlF3Cv+zzl+9Kg3yPQ6HmT6fXg8yAQEOEHm0LfHg0zHZ5xO/3LlSDrQnK6f93eWuQ/KJuHVRbjd4gSYcuWcQBRU9LMRfAkSnwAtgTu8r+FACk7g+M7XB4lIT2Cnqi4Qkfhju/M4VX04lvu+A4ABAHXq1DnlAmPMhaUwc1FOPl5gICnoHBEID8d9fTgJ03Ifv/KE608JMt8+CO4HnYPp6cRPPUTwzQF4MryJtJ7qDlUjc2oziQlt8STlCjJrauD+4yvn2L5BeJDjy7vc9/UJo8p4+GF45RVf/xh9Vuilwr2jnZrhBIxoVX3Ex+uGA/2ATCAEKAtMBK4EqnlrC25giKpeKSI/e98neZ+5HahcUHOTjW4yxvjb2XR8Hx85hjOZMfcyK7Oy6dpdnGOBSsLri53OeW8thpgYuPTSMypzQaObfA4S3mU4HgCqACuAT1X1zzMsUDzwsDqjm8YBE1T1SxF5H1iiqiNF5J9AC1UdKCJ9gRtVtU9B97UgYYw53/mjT6Ko8kl8iTOyaS5Of8RvIvI3Vf39LMv3KPCliAzF6ST/yLv/I+AzEVkL7MEZ4WSMMRe0sxmeXBwKU5NYqqotcn2uD3yhqu2Lq3CFZTUJY4wpvIJqEgGFuM8eEYk+9kFV1wOlz7ZwxhhjSq7CNDf9AxgvIr8CS3E6r9cVS6mMMcaUCD7XJFR1JdAKJ79EFZw5E38ppnIZY4wpAQqbvlRVdWyxlMQYY0yJ43OQEJEPgRtF5BCwFViCM1z17eIqnDHGGP8qTE2iE87CfhkiUhPvZLriKZYxxpiSoDBBYg5QHmdpjS3AFuDHYimVMcaYEqEwQ2BHATNE5GER6SQilxRXoYwxxpQMhQkSn+PkfgjEyfUwW0RsCKwxxlzACtPclKqqz+Te4c0eZ4wx5gJVmJpEsojcn3uHqqYXcXmMMcaUIIWpSVQFuonIozi5qBcDyao6rlhKZowxxu98DhLHlun2NjFF4awE2xawIGGMyVNGRgapqakcPXrU30UxQEhICLVq1SKoEBnsThskvImA5hxL9uNtYlro3YwxJl+pqamEh4cTERGBk9Le+IuqkpaWRmpqKvXq1fP5Ol/6JO4AForIlyLSX0SqnXEpjTEXlaNHj1KxYkULECWAiFCxYsVC1+pOW5NQ1YHeBzQBrgI+9s6RmA78BMxS1azCF9kYczGwAFFynMnfxWlrEiLyuoj0x8kdMVJVewBdgN+A3jiZ6owxxlyAfOm4Xgu0B+4GmojIDryL+wHfAQ8XX/GMMcb4ky/NTSNzfxaRejgjm6KBe4D/isg9qvpz8RTRGGOMv/jS3HRCI5aqblDV71R1qKreCHQAhhVXAY0x5mxt376dvn37EhkZSbNmzbj66qtZvXr1OXv+W2+9RdOmTfnrX/8KQIcOHdi7dy8jR448zZUwceJERISVK1fm7Js6dSr9+vUrtvLm5svopuki8i8RqZN7p4gEi0gX4CXgy9PdRERCROR3EVksIstF5Fnv/o9FZIOIJHu3GO9+EZG3RGStiCwRkVZn8P2MMRc5VeWGG24gPj6edevWsWLFCoYNG8aOHTt8vj47O/usyjBy5Eh+/PFHRo8eDcDs2bN9DhJjxowhLi6OL788/jO7ePFiYmNjz6pMvvKlT6IHcCcwxtvUtBcIxQkwvwBvqGqyD/dJB7qo6kERCQJ+E5HJ3mOPqOr4k86/Cmjo3doB73lfjTHno8GDIdmXn4pCiImBESMKPGX69OkEBQUxcODAXJfFsHHjRpo3b86yZcsAePXVVzl48CBDhgxh48aNXHXVVVx++eUkJSURExNDmzZtGDRoEABDhgwhPDychx56iM8//5y33noLj8dDu3btGDlyJC6XK+dZAwcOZP369Vx33XXceeedPPDAA5QpU4aePXuybt06YmJi6N69O6+88sopZT948CAzZsxgypQp9O7dmyFDhgBOkKhWrRqdOnVizZo1fP7553Tr1u1s/zTzdNqahKoeVdWRqtoRqAt0BWJVta6q3u1jgEAdB70fg7ybFnDJ9cCn3uvmAOVEpLovzzLGmGOWLVtG69atC33dqlWruP3221m0aBH33XcfX331Vc6xsWPH0rt3b1JSUvjqq6+YNWsWycnJuFyunNrCMe+//z41atRg+vTpPPDAAzn7X3zxRSIjI0lOTs4zQAB88803dOvWjejoaMLCwli40JnDvHjxYipVqsSvv/7KyJEjT3lmUSpUjmtVzQC2nenDRMQFLAAaAO+q6lwRuQd4QUSeBhKAx7yzumsCm3Ndnurdt+2kew4ABgDUqXNCi5gxpiQ5zb/4S5q6devSvn17AGJjY9m5cydbt25l165dlC9fnjp16vDOO++wYMEC2rRpA8CRI0eoUqVKkZVhzJgxDBgwAIA+ffowZswYWrRowZ49e3j4YWdgaWZmJuXKlSuyZ56sUEHiGBF5HmgCHAKGq+oqX67zTrqLEZFywEQRaQ48DmwHgnESGz0KPAfkNevjlJqHqo7yXkdcXFxBNRNjzEUoKiqK8eNPbs2GwMDAE/oaTp6JHBYWdsLnm2++mfHjx+d0goPTX3HHHXcwfPjwIi93Wloav//+O19//TUAt9xyC507d+a2226jZcuWBAQ4DUFLliyhefPmgBOknnzySdLT0ylfvjxDhw4963IUZqnw3Mqpam+cf8HfV9iLVXUvkAj0UNVt3ialdOB/OIsGglNzqJ3rslrA1jMsrzHmItWlSxfS09P54IMPcvbNmzePdevWsXPnTtLS0khPT+f7778v8D59+/blyy+/ZPz48dx8880AdO3alfHjx7Nz504A9uzZw6ZNm3wqV3h4OAcOHMj3+Pjx47n66qspVcpJ21OvXj2qVavGN998Q8uWLXPOW7JkCdHR0QC8/fbb3Hrrrbz77rsnjIY6G2caJDze0UYKhJ3uZAARqeytQSAioUA3YOWxfgbvUNtewDLvJd8Bt3tHObUH9qnqGTd1GWMuTiLCxIkTmTJlCpGRkURFRTFkyBBq1KjB008/Tbt27ejZsydNmjQp8D5RUVEcOHCAmjVrUr260z3arFkzhg4dyhVXXEF0dDTdu3dn2zbffqYqVqxIx44dad68OY888sgpx8eMGcOkSZOIiIjI2VJSUti4cWNOUACnz+VYTWL58uW0aNECj8dD6dKlff0jKpB4F3ct3EUiIcC/gGbAWFWdfJpLEJFo4BPAhROcxqrqcyIyDaiM07yUDAz0joAS4B2c0VWHgb+p6vyCnhEXF6fz5xd4ijHmHEpJSaFp06b+LsZF44cffmDs2LGULl2a++67L88/+7z+TkRkgarG5XVPn/skRGQGcK2q7gf6AxnAP1TV48v1qroEOGVgr6p2yed8Bf7pa/mMMeZid80113DNNdcU6T0L09xUTlX3i0hrnHWcygMfnOYaY4wx57HCjG7KEJFA4HbgJVUdKyLWtmOMMRewwgSJt3DyWocAj3n3lSnyEhljjCkxCpPj+lMR+RrIUtUjItIASCq+ohljjPG3ws64PpjrY1WcUUfGGGMuUIUKEt4VWm8F+gA7cGZd2wgkY4y5QJ02SIhII6AvTnA4CIwD4lV1o4hsKObyGWOM8SNfahIrgXnAzaq67KRjtlaSMcZcwHyZJ3ETsBGYIiKfici13nwQxhhzXrjQMtOdS77kk5ioqrfgLO/9E/APIFVE/geULebyGWPMWbkQM9OdSz7PuFbVQ6o6WlV7Ak2BOcDSYiuZMcYUgfwy09WuXTtnYTxwMtMdy/y2ceNGmjZtyqBBg2jVqhV33XXXCT/oQ4YM4bXXXgPg888/p23btsTExPCPf/yDrKysE56fOzPdG2+8AUCZMmV47LHHcjLT5bXAHxzPTPfRRx8xZsyYnP2ffPIJrVu3Jjo6mk6dOp3dH9BpnFE+CVXdA/zXuxljzGkNHjyY5CJOXxoTE8OI0yQzOpvMdP/73/8YOXIkixYtYvDgwTnpS8eOHctPP/10Qma6oKAgBg0axOjRo7n99ttz7vP+++/z008/MX36dCpVqpSz/8UXX2TZsmUF/pnklZmuYcOGvPTSSyQnJxMcHMzevXsL/d0K40yXCjfGmAtafpnpFi9enJOZLiEhISczXUxMDAkJCaxfv77IyjBmzBj69OkDHM9M53K5OHLkCA899BDz588v1qx0cIY1CWOMKazT/Yu/uFxomelefvllli1bxqRJkxgwYAB///vfGTRoULFkpQOrSRhjLnAXWma63377jbCwMPr27UvPnj1zgltxZKUD3ybTPVjQcVV9vchKY4wxRexYZrrBgwfz4osvEhISQkREBCNGjMjJTFevXr2zzkyXnZ1NUFAQ7777LnXr1j1tuXJnprvqqqt45ZVXTjg+ZswYlixZQkRERM6+tLQ0hg0bxvr16wkLCyMqKion+C1fvpz777+/SLPSgQ+Z6UTkGe/bxkAbnLSiANcCM1X170VWmrNkmemMKVksM92540tWOiiGzHSq+qz3Jr8ArVT1gPfzEJwlOowxxvhZcWSlg8L1SdQBcqcq9QARRVoaY4wxJUphRjd9BvwuIhO9n3sBn/p6sYiEADOBUt7njlfVZ0SkHvAlUAFYCPRTVY+IlPLevzWQBtyiqhsLUV5jjDFnqTAzrl8A/gb8CewB/qaqwwrxrHSgi6q2BGKAHiLSHngJeENVG3rvfZf3/LuAP1W1AfCG9zxjjDHnkM9Bwvsv+yZAGFAOuFZEnvb1enUcS1oU5N0U6AIcG8T8CU4NBeB672e8x7uKiPj6PGOMMWevMH0S3+L8cGcCh3JtPhMRl4gkAzuBKcA6YK+qZnpPSQVqet/XBDYDeI/vAyoW5nnGGGPOTmH6JGqpao+zeZiqZgExIlIOmIizUOApp3lf86o1nDJeV0QGAAMA6tSpczbFM8YYc5LC1CRmi0iLonioqu4FEoH2QDkRORasagFbve9TgdoA3uOX4PSFnHyvUaoap6pxlStXLoriGWOM8SpMkLgUWCAiq0RkiYgsFZElvl4sIpW9NQhEJBToBqQA04GbvafdgdOsBc6kvTu8728GpunpZv4ZY4wpUoVpbrrqLJ9VHfhERFw4wWmsqn4vIiuAL0VkKLAI+Mh7/kfAZyKyFqcG0fcsn2+MMaaQCjMEdhOwH6gK1M21+Xr9ElWNVdVoVW2uqs95969X1baq2kBVe6tqunf/Ue/nBt7jRbf+rjHmouJyuYiJiSEqKoqWLVvy+uuvF5htztescfnJK+Xo1KlT6dev3xnf018KMwT27ziT4X4GnvW+DimeYhljTNEJDQ0lOTmZ5cuXM2XKFH788UeeffbZfM8/2yCRV8rRxYsXExsbe8b39JfC9Encj7PA3yZVvRyIBXYVS6mMMRetpCQYPtx5LQ5VqlRh1KhRvPPOO6gqvXr1onXr1kRFRTFq1CiAPFOL5nVeXvJLObp48WK2b99Op06dqFatGlOnTi2eL1jUVNWnDZjnfU0GSh177+v150Ie5EIAACAASURBVGJr3bq1GmNKjhUrVhTq/NmzVUNDVV0u53X27KIpR1hY2Cn7ypUrp9u3b9e0tDRVVT18+LBGRUXp7t27dcOGDRoVFXXC+Xmdl5fPPvtMb731VlVVjY2N1QULFqiqanR0tL700kuqqjphwgTt379/0Xy5Qsrr7wSYr/n8rhamJpHqHZ30DTBFRL7l+HDVi8Leo3vZdmCbv4thzAUrMRE8HsjKcl4TE4vvWeodLPnWW2/RsmVL2rdvz+bNm1mzZk2e5/t6Xl4pRzMyMtizZw8PP/wwAJmZmcWedrSo+Dy6SVVv8L4dIiLTceYt/FQspSqBsrKzqDuiLv2i+/HO1e/4uzjGXJDi4yE42AkQwcHO5+Kwfv16XC4XK1asYOrUqSQlJVG6dGni4+NPSWMKkJiY6NN5+aUcve2222jZsiUBAc6/y5csWULz5s0Bii3taFE5o/SlqjpDVb9TVc/pzy75Dh48yKuvvkpmZma+57gCXLSv1Z4Zm2acw5IZc3FxuyEhAZ5/3nl1u4v+Gbt27WLgwIHce++97N+/n/Lly1O6dGlWrlzJnDlzgFNTi+7bty/P806WX8rRb775hpYtW+act2TJEqKjo4HiSztaVAozT+KCNX78eB555BF+/PFHvvrqK/KbuX1Zncv4z/T/kHY4jYqlbRkpY4qD2130weHIkSPExMSQkZFBYGAg/fr148EHHyQjI4P333+f6OhoGjduTPv27YFTU4sOHTo0z/NOll/K0aioKHr0OL6q0bJly3JqEsWVdrSoWJAA+vfvD8DAgQNp3bo1EyZMoE2bNqec1zmiMwC//vErvZr0OuW4MaZkysrKynN/qVKlmDx5cp7HvvjiixM+53debok+dqKsX3982lefPn0YMGAApUuX5vHHH/fp+nOp0M1NIhLmnTV9Qenfvz+zZ88mICCASy+9lA8//PCUc9rUaENIYAi/bvrVDyU0xlyIrrnmGj755BPee++9EpkP/LRBQkQCRORWEflBRHYCK4FtIrJcRF4RkYbFX8xzo1WrVixYsIDOnTtz9913M2DAANLT03OOlwosxYgrR/DkZU/6sZTGGHPu+FKTmA5EAo8D1VS1tqpWAToBc4AXReS2YizjOVWxYkUmT57ME088wQcffECnTp3YtGlTzvF/xP2DCqEVyMzOJFvzn9ZvjDEXAl+CRDdVfV6dtZdyfhVVdY+qTlDVm4Cviq+I557L5eKFF15g4sSJrFy5ktjYWL799tuc47sP76b9h+35YMEHfiylMcYUP1+CxIci8qCIdBGRPIf0qGpGEZerROjVqxeLFi2ifv369OrVi8GDB5Oenk7F0IqEBYfx3MznyMrOu0PMGGMuBL4EiU+9r3cACSKyTkS+F5GhItK7GMtWIkRGRjJr1izuv/9+3nzzTTp27Mj69ev5V9t/sfXAVhI2JPi7iMYYU2xOGyRUNUFVX1fVO1Q1BmgMPAGsAtoVdwFLglKlSjFixAgmTpzIunXriI2NJX1JOuVDyvPJ4k/8XTxjjCk2hVkqvIKIPA+8C1wOfK+qDxdbyUqgXr16kZycTFRUFLf95Taq7qrK1yu+Zt/Rff4umjHGFIvCzJP4EjgATAJKA7+JSNtiKVUJVrduXWbOnMnjjz/Oys9WEj4znIXzFvq7WMYYUywKEySqq+rLqvq9qg4HrgXeKqZylWhBQUEMGzaMXyf8StiaMLrFd+PR/zxKRsYF2X9vjLmIFSZI7BGR6GMf1EknWvIWGjmHLr30UhYvXkz8P+J5Of1lYrvFlsgFuoy52JWE9KXnq8IEiX8AX4jIeyIySETeAdYVU7nOG2XLluWjYR9R9pKypMSmENshlrfeeqvA/wCNMedWSUhfer7yOUio6kqgFc4M7CrAYuAvvl4vIrVFZLqIpHiX9Ljfu3+IiGwRkWTvdnWuax4XkbUiskpErvT5W51jEeUi+OH2HwisGIhrgIv7n76fzp07s3r1an8XzRhzEn+lL/3kk09o3bo10dHRdOrUqXi/ZBGSY9mZfDpZJOhMJ86JSHWcfo2FIhIOLAB6AX2Ag6r66knnNwPGAG2BGsBUoJGq5jt7LS4uTufPn38mxSsSMzbOoNdXvdAMRd9TPHs8PPfcczz44IO4XBfcmojGnFZKSsoJi9bFfxx/yjl9ovowqM0gDmcc5urRV59yvH9Mf/rH9Gf34d3cPPbmE44l9k/0qRxlypTh4MGDJ+wrX748K1euJCgoiAoVKnDkyBHatGnDjBkzOHDgAD179mTZsmU55+/Zs+eU8ypWPHV+8eeff87kyZMZPXo0rVq14sMPP6Rhw4a0a9eO5ORkgoOD2bt3r98y0538dwIgIgtUNS6v8wszBPZDYIeIbBaRuSLygYj8y9frVXWbqi70vj8ApAA1C7jkeuBLVU1X1Q3AWpyAUWJ1jujMrDtn8WCnB0mZl8KVV17Jv//9bzp06MDy5cv9XTxjTC7nMn2py+XiyJEjPPTQQ8yfP/+8SV0KkGfi67w2nMlzQd73NYGrgcd8vf6ke0UAfwBlgSHARmAJ8H9Aee857wC35brmI+DmPO41AJgPzK9Tp46vucDPiRU7V+jQ/w3VSpUqaXBwsD777LN69OhRfxfLmHNmxYoV/i6CqqqGhYWd8HndunVaoUIFnTZtmnbs2FEPHTqkqqqdO3fW6dOn64YNGzQqKirn/OnTp+d53sl2796tlSpVyvn/fP369Vq7dm3Nzs7WgwcP6pgxYzQ2NlbfffddVVU9fPiwPvDAAzpo0CB98skni+OrnyKvvxNgvubze12Yjus5QHlvYNmiqj+q6ouFDUoiUgaYAAxW1f3AezirzMYA24DXjp2ax+WntI2p6ihVjVPVuPwyyvmDqnLXd3fx2o7XGDdzHDfeeCPPPPMM0dHRTJs2zd/FM+ai5Y/0pb/99hthYWH07duXnj175uTHLumpS6Fwo5tGATNE5GER6SQilxT2YSIShBMgRqvq1wCqukNVs9RZYfYDjjcppQK1c11eC9ha2Gf6i4jwxU1fUDqoNLf8cAtD3h7CTz/9RFZWFl27dqVfv37s2LHD38U05qJwLH1pVFQU3bp144orruCZZ56hR48eZGZmEh0dzVNPPZVn+tJHHnkk3/NONmbMGCZNmkRERETOlpKSwrBhw2jcuDGtWrViw4YNDBo0CHBSl7Zo0aLEpi4FCtXctAF4FngMp0N5ObCuENcLzmKBI07aXz3X+wdw+iEAonBGUJUC6gHrAVdBz2jduvXZ1sSKXMquFK38cmUNHxauHyz4QA8dOqRPPfWUBgUFably5fT999/XrKwsfxfTmGJRUpqbSqrvv/9eb7/9dh04cOA5+7MqbHNTYYLEr3nsK1WI6y/FaS5aAiR7t6uBz4Cl3v3fnRQ0nsSZi7EKuOp0zyiJQUJVdcOfGzT+43i99otrNTs7W1VVU1JS9PLLL1dA27Ztq0lJSX4upTFFz4JEyVOcfRLJx+Y25KqFpOd38slU9TdVFVWNVtUY7/ajqvZT1Rbe/dep6rZc17ygqpGq2lhVT5+FvISKKBdBwu0JjL5xNCLC+j/XMy99HlOnTuXzzz9n8+bNuN1ubr/9drZs2eLv4hpjTI7CBImqwEAR2erNJ/HCxZBPoqgESADhpcIBeHvu29z+ze3cNO4muvfqzurVq3niiScYO3YsjRo14oUXXuDIkSN+LrExxvgQJETELSKiqn1UtSlO/8DTwGouknwSRe3VK17l1e6vMnnNZKJGRjF502SGDh3KihUr6NGjB//5z39o1qwZ48aNyxnLbYwx/uBLTeIOYIGIfCki/XHmMSxU1U/0IssnUVRcAS4e6vAQCwYsoO4ldekzvg+jFoyifv36TJgwgYSEBMqUKUOfPn1wu93MnDnT30U25ozZP3RKjjP5u/AlM91AVW2FM+mtPPCxiCSJyDARuUxEbL2JMxRVJYo5f5/De9e8x19aOMtgrdq9ijYd27Bo0SI++ugjUlNT6dy58ylLBBhzPggJCSEtLc0CRQmgqqSlpRESElKo6wq1dlPORSKhONnprgLcms+aH+eav9duOlvZmk30e9Gk7k/lbzF/459t/0mNkBq8/fbbDB8+nP3793PHHXfw3HPPUbt27dPf0Bg/y8jIIDU1NWfymPGvkJAQatWqRVBQ0An7C1q76bRBQkRexxmeugRYXpgRTefa+R4kAOZtmcfrc15n/IrxZGVncXXDq3m689NEhkQyfPhw3n77bUSEAQMG8Nhjj1GjRg1/F9kYc5472wX+1gLtgbeBbSKywts/8YSIdBeRUkVZ2Itdm5ptGHPTGDYN3sRTlz3FvK3zWLl7JRUrVuSVV15h9erV9OvXj5EjRxIZGcngwYPZvn27v4ttjLlAFbq5SUTqAS2AaJz8EjHAPar6c9EXr3AuhJrEyQ5nHCbYFUxgQCCvzX6N6Runc2fsnTRxNeHVF1/l008/JSgoiHvuuYdHH32UqlWr+rvIxpjzTFEtFT4UQFU3qOp3qjoU6A10BIYVSUnNKUoHlSYwIBCAkMAQft/yOzeNvYn2E9rj6enhg2kf0KdPH958803q1avHfffdxx9//OHnUhtjLhSFmUxXU0RuPfZBRCoDU70zpL8o8pKZU/yz7T/Z+tBWfrntF/pE9eHHNT8ydvNYPvnkE1JSUujdpzfvvfcekZGR3HHHHaxYscLfRTbGnOd8bm4SkWDgZ+BRnDWY/gc8qqo/FF/xCudCbG4qiCfLw54je6hWphob926k5xc9ubbOtWyftp2x/x3L4cOH6dWrF4899hjt2tm8R2NM3gpqbgr04eJPgYXAIuCfOLWGTKCXqq4tyoKawgl2BVOtTDUA0g6nUbZUWV5c8CJcAq1ebUWl7ZVI/G8i37T/ho4dOzJ48GB69epFYOBp/9qNMQbwrbnpE+95d+IEiAjgT+A2Ebm5gOvMOdS6Rmtm3zWbDfdv4KVuL4ELEoMSWbRkESNGjOCPvX/Q+5beREZG8uqrr7J3715/F9kYcx44k9FNgUAzoCXQsiQtzXGxNTedztYDW6kR7syj6PhRR9bvXE/ZJWVZPW41YSFh9O/fn0GDBtGsWTM/l9QY409nNbpJRE5II6qqmaq6RFU/OxYgTj7HlAzHAgTAg+4HqVmxJqubrKbqC1VpcmcT/vvFf4mKiuKyyy5j9OjRNivWGHMKX5qbpovIv0SkTu6dIhIsIl1E5BOcRQBNCXZTs5uYd/c8fvrrTzSu2pgFFRcw/OvhvPTSS6TuTOW2u2+jVq1aPPzww6xevdrfxTXGlBC+LMsRgtMf8VecZcL3AqE4AeYX4F1VTS7mcvrEmpt8tzptNVXDqnJJyCW8+/u73P/T/ZQ/WJ60BWnoOqVzZGcG3j2Q66+/ntDQUH8X1xhTjM5q7aaTbhQEVAKOqGqJ6/m0IHFmUnal8OniT5m6YSoLty0kW7ORDEFfUcqGlKVn3578/da/07lTZwICCjO1xhhzPiiyIJHrhs8BTYDDwHBVXXV2RSwaFiTO3t6je5m5aSbLdiyjXUY7Pv30U0YzmqxaWYSkhdCmWhv6d+nPTW1v4pKQS/xdXGNMESiOIPGOqt7rnWD3hqr+04dragOfAtWAbGCUqr4pIhWAr3CG1m4E+qjqn97O8DeBq3GCUX9VXVjQMyxIFI9xS8bxQcIHzNk6hwOlD0AAlE0ry7DGw7jppptI3J1I/fL1aVm1JaUCbb1HY843xREkXgM+B5YBH6hqfx+uqQ5UV9WFIhIOLAB6Af2BPar6oog8hpP57lERuRr4F06QaAe8qaoFThu2IFH8Vm1YxWtfvcaUKVPYOG0jBIE8LmiAEiiBRFWJIrZ6LH2j+nJlgyv9XVxjjA+KZIG/kzwJdANG4dQCTktVtx2rCajqASAFqAlcjzNhD+9rL+/764FP1TEHKOcNNMaPGtdrzKjHRrEhYQPLly/nmSefocGPDeAryJyZyR/L/2DC4gnMWjsLgJ2HdtL54868MPMF5m2ZR1Z2lp+/gTGmMM6oJnHWDxWJAGYCzYE/VLVcrmN/qmp5EfkeeFFVf/PuT8BZKyrfqoLVJPwnJSWFcePGMW7cOCfNagC0jWtLXM84poVPY+W+lQBUCK1At/rdGNZlGJEVIv1camMMnOXaTblu0gVnGOxenGamJcCywmaqE5EywARgsKruL2AeXl4HToloIjIAGABQp06dUy4w50bTpk15+umnefrpp1m5ciUTJkxg0qRJvPfMe6gqNRrWoFnPZlAJZm6aSbZmAzBqwShGzBlBbPVYYqt5t+qxVAit4OdvZIyBwq0CuxVngb9AnIRD0UCUqjbw+WHOENrvgZ9V9XXvvlVAvKpu8zYnJapqYxH5r/f9mJPPy+/+VpMoeXbs2MEPP/zApEmT+OWXXzh8+DClw0rTrVs3rrziSlzNXPyw7QcWbV9E6v5UAARh32P7CC8VzoKtC3AFuGhRpQWuAJefv40xF6Yi6bgWkZmqetlZFEJw+hz2qOrgXPtfAdJydVxXUNV/i8g1wL0c77h+S1XbFvQMCxIl29GjR5k+fTqTJk1i8uTJbNy4EYCIiAi6d+9Ouy7tKNekHDszdnJPm3sAuGr0Vfy09ifCg8NpX6s9HWp3ID4inviIeP99EWMuMGcVJHItFV4d2Kmqr51hIS4FfgWW4gyBBXgCmAuMBeoAfwC9VXWPN6i8A/TAGQL7t4L6I8CCxPlEVVm3bh2//PILU6ZMYdq0aezfvx8RIS4uji5dutC5c2dqt6jN4j2LmbV5FrM2z2LpjqV0qtuJGf1nADB05lCqlalG25ptiaocZbUNY87A2QaJrnhXfPVu5YHF3m2Jqo4r2uKeOQsS56/MzEx+//13pkyZwi+//MK8efPIyMggICCA2NhYLrvsMi677DJatm1JVkgWDSo0IDM7k1qv12LHoR0AhAWFEVcjjrtb3c1fo/+KqpKt2RY4jDmNIp0nkWup8F5AXVW96+yLWDQsSFw4Dh8+zJw5c5gxYwYzZ85kzpw5OavUNm/eHLfbTbt27WjXrh2BVQOZv20+c1Pn8vvW3/lri79yX7v72HpgK5FvRdKscjNaVGlB8yrNaVGlBW1qtrGOcWNyKcq1m2KAvwC3ADuAJqpaYtZmsCBx4UpPT2fevHnMnDmTX3/9lblz5/Lnn38CEB4eTps2bWjfvn1O4KhatSpbD2zltdmvsWzXMpbuWMq2g86Yh097fUq/lv1Yk7aGUQtG0aF2B9y13TlZ/oy52Jxtc1MjoC9wK3AIp//gK1XdKCIbVLVeURf4TFmQuHioKmvWrGHOnDnMnTuXOXPmsGTJEjIzMwGnM7x169bExsYSGxtLTEwMwZcEs3zXcppWbkqVsCpMTJlI3wl98WR5AKhfvj7uWm6GdR1GnUtsOLW5eJxtkMgG5gF3qeqyk46tV9X6RVbSs2RB4uJ2+PBhFi5cyNy5c5k7dy6LFi1i7drjadirVKmSEzSOBY7aEbVJ3pFMUmoSszfPJik1iaX3LKVCaAVemPkCHy/+mCaVmtC4YuOc1w61O1g/h7mgnG2QuAGnJnEZMBWnJvGTqmZYkDAl3f79+1m8eDGLFi3K2ZYvX55T4wgNDaVp06ZERUWdsNWtW5fxKeMZt2Icq3avYs2eNRzNPEpoYCgHnzhIgATw7u/vsuPQDrrU60L7Wu0JCQzx87c15swU1TyJMJzO6r8AbYAfgWtVtVJRFfRsWZAwvkhPT2fFihUsWrSIZcuWsXz5cpYvX86WLVtyzgkLC8sJHk2bNqVBwwaE1wrHVcFF1wZdAeg3sR9fLP2CbM0mJDCEDrU7cEOTG7i37b3++mrGnJHiWAW2AtAb6Kuql59l+YqMBQlzNvbu3cuKFStygsaxbdu245P8RYQ6derQsGFDGjVqRO2GtTlS5QibXZtZsGcBUVWi+OKmLwC44asbqBVei+iq0bSs1pLmVZpTOqi0v76eMfkq8iBRUlmQMMVh//79rFmzhtWrV7N69eoT3u/bty/nvMDAQGrXrU39iPrUrleb6bWns1N2ciT7CAABEsCz8c/yn8v+gyfLw89rf6ZJpSZElIsgyBXkr69njAUJY4qDqrJ79+4Tgsf69evZsGEDGzZsYNeuXc4yleWAqhBYK5AaGTVoHtacMpFlGFtxLAAucVE7vDZNqzTl0Y6P0jmiM4c8h9h9eDe1L6lNgFjKWFO8LEgY4wcHDx5k06ZNOUHj2LZx40bW/7Ge/aX3Q0VO2KokV6GhqyEBjQP4tc6vuHBRIagC1ctUp275ugy/YjhRVaPYsn8L6/5cR43wGtQMr0loUKifv605n1mQMKYE+vPPP/njjz/YvHnzCVtqaiob0jawpfQWMsMzoSwQDpSFwK8DqR1cG1c7F2ub5BreG1yFJuWa8Hq314mpH8PRrKOEBIbYUF3jEwsSxpyHVJVdu3blBI7cgWTdjnVsPLKRtPQ0sspkQRWgKvABBGYHUrpnaQ62OEg5TzkquipSLawatcrVYlDLQdSpXQfCoXSp0lQqXWIGJxo/siBhzAUqOzubXbt2sWXLFlJTU3O2eWnzWJm9kjRXGkeDj6JlvP+fD/deeCMQDYFHA6ngqUDtwNo0vaQpPer2oGbNmtSqVYuaNWsSGmrNWBcDCxLGXMRUlb1797J201p2b9tNamoqs1JnsXLfSjZnbCYtOI308HTYBbzvvehKQCDsQBg1A2pS/5L61KlRh1q1ap2w1axZk7Jly/rx25miYEHCGFOgo5lHWb9zPa4DLlJTU3lwwYOkHEkhgwznhGwISQnh6DhnJV6aAvuA3RBeKjzP4JH7c4UKFSggVbHxMwsSxphCy8rOYnXaapK3J7Ni1woaVWxE78a9Wf/HepqPaY56U86HZ4VT5mAZyqwpw6GFh9i2bRsn/66EhITkBI46depQv359IiMjqV+/PvXr16datWoWRPzIgoQxpshkazar01azYtcKUnalsGzXMhZuW8i/2v6Le9vey5pda+jyaRcalG5ADWoQfjCcjJ0Z7N+8n+1btrNx40a2bNlyQiAJDQ3NCRi5g0dkZCQRERGEhNi6WMWpoCAReK4LY4w5vwVIAE0qNaFJpSZOs5PXsR99DVAujbiU+Vvnk7gn0TlYBr4Z8g3XN7meOalzGDZzGOWkHMFHgsn6M4uMbRnsX7ufjes3kpCQwOHDh3PuKyJERETQuHFjmjRpQpMmTXLeV61a1WogxcyChDGmSBz7sW5UsRFjbhoDwN6je1m8fTGb9m2iTc02OfvW7V3H5n2bOeA54FwcDnPfnUvbmm2Zs3kO01ZPo2J6RVy7XaSuT2XVqlWsWrWKmTNnnhBAypYte0LQaNq0KS1atKB+/foEBNhM9aJgzU3GGL/Zd3Qff+z7gxW7VnBd4+sIDQrlqWlPMfTXoQAIQq2ytWhQoQHf3/o9Ia4Qpi+bzpr1azj4x0E2rt7IypUrWbVqFampqTn3DQsLIyoqiujoaFq0aJGzVapk80LyUiL6JETk/4CewE5Vbe7dNwS4G2fwHcATqvqj99jjwF1AFnCfqv58umdYkDDm/KeqbDmwhUXbFpG8PZk1e9aw9cBWpvSbgohw29e3MXrpaACqhlWlQYUGtKjSgpc7v0xKSgozk2eyYcUGUpaksHTpUnbv3p1z7+rVqxMdHU1cXBytW7cmLi6OWrVqXfRNViUlSFwGHAQ+PSlIHFTVV086txkwBmgL1MBJdtRIVbMKeoYFCWMufCt3r2TpjqWs+3Mda/esZe2etQS5gpjSbwoA8R/HM2PTDGqE16BRhUbUDK1J1Yyq1NhRg6VLl7Jw0UJWLF9BVpbzc1K5cuUTgkbr1q2pWbPmRRU4SkTHtarOFJEIH0+/HvhSVdOBDSKyFidgJBVT8Ywx54mcTvN8PNLhEbrX786aPWtYs2cNP//xM3E14njtodec699pQv3s+lQLqkapA6U4lHqIVUtW8cvwX5zAEQJVy1Wlg7sDHTp0oGPHjrRq1YpSpUqdq69YopSEjut7ReR2YD7wkKr+CdQE5uQ6J9W77xQiMgAYAFCnjiWvN+Zid02ja7im0TUn7EvPTAecpqzezXqzYvcKJy2tZw2eih7ufuhuRvw4gkXJi+g0pRM7dSffHfmOiesmwkIIXBlIu9Lt6NCxA5VjKnNVh6uIqhN1UdQ2zmnHtbcm8X2u5qaqwG5AgeeB6qp6p4i8CySp6ufe8z4CflTVCQXd35qbjDGFkZmdya5DuxARqpWphifLw8h5I9l5aCc7D+1kU9om1uxcQ8TeCNIT05m/aj6Z9zv50SVLKKtlaVSuEY/EP0Lv1r3J1myA8y4HSIlobsqLqu449l5EPgC+935M/f/27j+2qvKO4/j7S1nrBJEqVqjtpChmo62hAX/MlCHChnMZQmgsK26ALGG6f5j/bKYuyxaW7Efi2LI/jDHRuaVWtoAR55XVFokEGCqIgIlQQdQCsmEntW4t2Gd/nKdyLD2099e5l/p5JTf33PPjOZ8+52m/957Tey9QHlq1DDgaYzQR+RwYPWo0ky6Z9OnjwoJCVt+8OnL9k6dO8mjro2x7Yxv7ju/jnVPv8PJlL3PX8ruodJVM+8Y0NhZvpKqkiprSGqpLqqkqqWJm6UwuKbokjh8p43L9SmKSc+6Yn/4RcJNzbomZVQJNnL1w3QpM1YVrEcknZ86cYffu3bS1tdHW1saW/Vvoqe6BK6HgqgI+KQz+ZL1w9wvMvWYuW9/Zyrr966i8opLqK6u5/srrGVs4Nsc/Rf78d9OTwK3ABOB94Gf+8XSC001vA6tCRaMRuAc4A6x2ziWG2oeKhIjkUm9vLzt37qStrY1N/9jE9r3bcRMc4z8az/w587m49mLWnVpH9+luIHgfyNTLp7Jl+RYmjp1Ix6kOikYXxf49H3lRJOKgIiEi+aSzs5OWlhYSiQTPP/88x48fB4PKsM4VCwAACG9JREFUWyqpmltF8bRiTo46SXNdM6NsFKs2ruKRXY9QNq6MxV9ZzNrb18aSU0VCRCTH+vr62LNnD4lEgkQiwbZt2+jr66OiooKFCxeyaNEiCicXsvXdrew6vouK8RWsuW1NLNlUJERE8syJEyfYuHEjGzZsoKWlhd7eXkpKSliwYAGLFi1i3rx5FBYWxpJFRUJEJI91dXWRSCRYv349zz33HF1dXRQXF1NXV0dDQwOzZs2ioKAga/tXkRARuUD09PTQ0tJCc3MzTz/9NN3d3ZSWllJfX09DQwMzZszI+Jv4VCRERC5A3d3dPPvsszQ1NZFIJDh9+jTXXnstS5cuZdmyZVRUVGRkPyoSIiIXuM7OTtavX09TUxObN2/GOcfs2bNZsWIFdXV1jBkzJuW2z1ckLqz3jouIfE4VFxezcuVKWltbOXLkCGvWrKGjo4Ply5czceJEHnrooazsV0VCROQCU15eTmNjIwcOHOCll16ivr6e8vLyoTdMQT58CqyIiKTAzKitraW2tjZr+9ArCRERiaQiISIikVQkREQkkoqEiIhEUpEQEZFIKhIiIhJJRUJERCKpSIiISKQR9dlNZvYv4EiKm08A/p3BOJmUr9mUKzn5mgvyN5tyJSfVXFc7564YbMGIKhLpMLNXoj7gKtfyNZtyJSdfc0H+ZlOu5GQjl043iYhIJBUJERGJpCJx1iO5DnAe+ZpNuZKTr7kgf7MpV3IynkvXJEREJJJeSYiISCQVCRERiTRii4SZ3W5mb5pZu5n9ZJDlRWb2lF/+TzObHFr2gJ//ppnNH26b2cxlZl83s1fNbK+/vy20zYu+zdf8rSTGXJPN7L+hfT8c2maGz9tuZn8wM0s2V5rZloZyvWZmfWY23S+Lo8++Zma7zOyMmdUNWLbMzA7627LQ/LT7LNVcZjbdzLab2X4ze93M6kPLHjezw6H+mh5XLr/sk9C+nwnNr/DH/KAfA4Vx5TKzOQPG1//MbKFflnZ/DTPb/Wb2hj9erWZ2dWhZZsaYc27E3YAC4C1gClAI7AGmDVjnPuBhP70EeMpPT/PrFwEVvp2C4bSZ5Vw1QKmfrgI6Qtu8CMzMUX9NBvZFtLsT+CpgQAL4ZpzZBqxTDRyKuc8mA9cDTwB1ofmXAYf8fbGfLs5En6WZ6zpgqp8uBY4B4/3jx8PrxtlfftlHEe2uA5b46YeBe+PMNeCYfgBcnIn+SiLbnNA+7+Xs72XGxthIfSVxI9DunDvknOsFmoE7B6xzJ/AnP/03YK6vqHcCzc65HufcYaDdtzecNrOWyzm32zl31M/fD1xkZkVJ7j/juaIaNLNJwDjn3HYXjMwngIU5zPYd4MkU9p9yLufc286514G+AdvOB1qccx845zqBFuD2DPVZyrmccweccwf99FHgBDDou3BTkE5/Dcof49sIjjkEYyC2/hqgDkg45z5Ocv/pZtsc2ucOoMxPZ2yMjdQicRXwbujxe37eoOs4584AHwKXn2fb4bSZzVxhi4Hdzrme0LzH/Mvan6ZwiiLdXBVmttvMtpjZrND67w3RZhzZ+tVzbpHIdp8lu20m+iwT4xQzu5Hg2etbodm/9Kc1fpfCE5R0c11kZq+Y2Y7+UzoEx/g//pin0mYmcvVbwrnjK53+SiXbSoJXBufbNukxNlKLxGC/8AP/1zdqnWTnx5UrWGhWCfwaWBVavtQ5Vw3M8rfvxpjrGPAl51wNcD/QZGbjhtlmtrMFC81uAj52zu0LLY+jz5LdNq4xdv4GgmebfwZWOOf6nz0/AHwZuIHgFMaPY871JRd83EQDsNbMrslAm5nI1d9f1cCm0Ox0+yupbGZ2NzAT+O0Q2yb9847UIvEeUB56XAYcjVrHzEYDlxKcU4zadjhtZjMXZlYGbAC+55z79Bmec67D33cBTQQvU2PJ5U/LnfT7f5Xgmed1fv2y0Pap9Fda2ULLz3mWF1OfJbttJvosrXHqC/zfgQedczv65zvnjrlAD/AY8fZX/+kvnHOHCK4n1RB8kN14f8yTbjMTuby7gA3OudOhvOn217Czmdk8oBFYEDq7kLkxls6FlXy9AaMJLtRUcPaCT+WAdX7IZy92rvPTlXz2wvUhggtIQ7aZ5Vzj/fqLB2lzgp/+AsH52R/EmOsKoMBPTwE6gMv845eBmzl7geyOOI+lfzyK4BdjStx9Flr3cc69cH2Y4IJisZ/OSJ+lmasQaAVWD7LuJH9vwFrgVzHmKgaK/PQE4CD+Ai7wVz574fq+uHKF5u8A5mSyv5IY+zUET8ymDpifsTGWVOgL6QbcARzwHdjo5/2CoNoCXOQHWDvB1f7wH5FGv92bhK78D9ZmXLmAB4Fu4LXQrQQYA7wKvE5wQfv3+D/aMeVa7Pe7B9gFfDvU5kxgn2/zj/h3+Md8LG8FdgxoL64+u4GgQHUDJ4H9oW3v8XnbCU7rZKzPUs0F3A2cHjDGpvtlbcBen+0vwNgYc93i973H368MtTnFH/N2PwaKYj6OkwmeGI0a0Gba/TXMbC8A74eO1zOZHmP6WA4REYk0Uq9JiIhIBqhIiIhIJBUJERGJpCIhIiKRVCRERCSSioSIiERSkRARkUgqEiJZZmaXmtkGO/t9IN/PdSaR4Ro99CoikqbFQJdzbgaAmX0xx3lEhk2vJESybxcw23/U9c+BnqE2EMkXKhIiWWRmlwK/Ifhms5sJvkks2S+rEskZnW4Sya5VwCbn3IcAZrYdmJjbSCLDp1cSItlVQ/BJs+HHe3OURSRpKhIi2dVJUBgws28B44BtOU0kkgR9VLhIFplZBfAUwZdYHSb4UpxUvqFPJCdUJEREJJJON4mISCQVCRERiaQiISIikVQkREQkkoqEiIhEUpEQEZFIKhIiIhLp/1o9+sCsRPe2AAAAAElFTkSuQmCC\n",
 "text/plain": [
 "<Figure size 432x288 with 1 Axes>"
]
 },
 "metadata": {
 "needs_background": "light"
 },
 "output_type": "display_data"
 }
],
 "source": [
 "d_fit = np.arange(0,0.2,0.001) #Define new array for delta\n",
 "plt.plot(d_fit, poly(d_fit, *coeff1), 'r', label='Curve fit '+'$\\Delta$'+'h_o')\n",
 "plt.plot(d_fit, poly(d_fit, *coeff2), 'k', label='Curve fit '+'$\\Delta$'+'s_o')\n",
 "plt.plot(delta_h[:,0], delta_h[:,1], 'bo', markersize=3, label='Data '+'$\\Delta$'+'h_o')\n",
 "plt.plot(delta_s[:,0], delta_s[:,1], 'g--', markersize=3, label='Data '+'$\\Delta$'+'s_o')\n",
 "plt.xlabel('$\\delta$')\n",
 "plt.ylabel('$\\Delta$'+'h_o'+'(kJ/mol)'+' and '+'$\\Delta$'+'s_o'+'$(J/molK)$')\n",
 "plt.legend(loc='center right')\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">**Solution:** $\\Delta h_o$ and $\\Delta s_o$ can now be computed as a function of $\\delta$ and the curve fit coefficients found, _coeff1_ and _coeff2_ respectively \n",
 "___ "
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Problem 5 \n",
 "Given a temperature of operation $T=1273 K$ for Ceria and an initial amount of moles of water $n_{H_2O,i}= \\delta_f = 0.1$. Solve for $\\delta$ using an iterative approach. \n",
 "\n",
 "**Background:** The partial molar Gibbs free energy for Ceria $\\Delta g_o$, which is a function of both nonstoichiometry and temperature, is expressed as two equations below: \n",
 "\\begin{equation*}\n",
 "\\Delta g_o (\\delta,T) =-RT \\ln {p_O}_2 (\\delta,T)^{1/2} \\quad \\quad \\text{(1.50)}\n",
 "\\end{equation*}\n",
 "\\begin{equation*}\n",
 "\\Delta g_o (\\delta,T) = \\Delta h_o(\\delta) - T \\Delta s_o(\\delta) \\quad \\quad \\text{(1.51)}\n",
 "\\end{equation*} \n",
 "Also, the oxygen partial pressure ${p_O}_2$ can be obtained from the reaction equilibrium analysis of the dissociation of H_2O. From (1.33) we recognize that the reaction coordinate $\\epsilon$ is equal to $\\delta_f - \\delta$,\n",
 "\\begin{equation*}\n",
 "K_{H_2O} = \\frac{(\\frac{\\epsilon}{n_{total}}) * {{p_O}_2}^{1/2}}{(\\frac{n_{H_2O,i}-\\epsilon}{n_{total}})} = \\\n",
 "\\frac{(\\delta_f - \\delta) * {{p_O}_2}^{1/2}}{n_{H_2O,i}-(\\delta_f - \\delta)}\n",
 "\\end{equation*}\n",
 "\\begin{equation*}\n",
 "{{p_O}_2}^{1/2} = \\frac{n_{H_2O,i} -{(\\delta_f - \\delta)}}{{(\\delta_f - \\delta)} * K_{f,H_2O}} \n",
 "\\end{equation*} \n",
 "\n",
 "**NOTE:** For this we will use Python, and import data for the equilibrium constant of formation of water K_{f,H_2O} from the [NIST-JANAF](https://janaf.nist.gov/) website. A curve fitting procedure needs to be applied, similar to Problem 4."
]
 },
 {
 "cell_type": "code",
 "execution_count": 11,
 "metadata": {},
 "outputs": [],
 "source": [
 "#Import Equilibrium Constant Data for formation of Water, 1bar, (l,g)\n",
 "data3 = pd.read_csv('H2O_Equilibrium_Constant.csv')\n",
 "Kf_H2O = np.array(data3)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Plot extracted data by slicing the data array in different columns. The first column represents $T (K)$ while the second column represents $log ({K_{f,H_2O}})$. The data has a linear relationship when plotted with $\\frac{1}{T}$ in the x-axis."
]
 },
 {
 "cell_type": "code",
 "execution_count": 12,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5gcVb3u8e9LSAhK5BICBkJIUBBUbjoCOYp7JKKICuhW1C0KgmSjiOIddCuocOIdtsejGC6C28hF1AdvZx8xMAZ0jA4SExCQqzASQ4hGiHIJ4bf/qDVQabpnujPd1Zd6P8/Tz3StWrVqra6e/vVaq7pKEYGZmZXXJu2ugJmZtZcDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EHQoSTMlrZU0IS0PSHpnev5WST/L5Q1Jz26g7A22t/GTtLmkH0n6u6Tvtrs+RZJ0oKRb2rDf50i6XtKDkt5b9P57iQPBOEm6S9JD6UN75PHV8ZYbEXdHxBYRsb7KuoUR8YpxlD2u7Rsl6ZWSFqd/2FWSfiHpsBbub1YKjps2qbx+ScNjZHsDsD0wNSLe2KR9Pl7xvvrReMtthsovHhFxTUQ8pw1V+QgwEBFTIuIr+RWS3iLpDxVpV9ZIO2WsHUk6RtK1Tal1B3IgaI7Xpg/tkcd72l2hWpr14djA/t4AfBf4FjCD7MPyk8Bri6xHAXYG/hgRjzW64SjH5N6K91XDr1nRx7tgOwM31lj3C2APSdPgiddhb+BpFWlzgMWtrmjHH4eI8GMcD+Au4OU11k0AvgjcD9wBnAgEsGm1bYHTgW+n57Mq8g4A70zPjwGuzW0XwHvTPu4HvgBsksv7S+As4K/AGfntK/dTY18j269J+/hfKf0e4D7g6BrtF3A38OFRXr9NgP8A/pTK+hawZUXdjk7l3A98PLftfsAQ8ACwEvhySr87bbc2PeYAzwKuAlanchYCW1Ucxw8By4C/A5cCk4GnAw8Bj+fK26GiDZ8CHgXWpfXH1dmu41JdF1d5XfqB4Rqv2WbA2cC96XE2sFl+O+CjwF+A/8qlfSTVZQVwBHAo8Mf0vvhYxes6mI73CuCrwKS0bnGq+z9SW99UWVdgD7L30BqyD+rDcusuBP4v8BPgQWAJ8KxR3h+HpTLWpDL3SOlXAeuBh1M9dquy7e3Av+badDVwUUXaP3NtOyVt8yDwB+B1ufY8nPa3FliTOw5fTMdwJXAOsHmt49Duz6rRHu4RtNbxwGuAfYE+suGDVnld2scLgMOBY3Pr9if7AN8OOHMjyt6f7ANyKvAd4BLgRcCzgaOAr0raosp2zwF2Ai4fpexj0uNlwC7AFmQfPHkvSWXNBT4paY+U/p/Af0bEM8g+6C9L6S9Nf7eK7Jv0IFlQmg/sQPaPvRNZ4M07EjgEmA3sBRwTEf8AXsWG387vzW8UEacB/xu4NK0/v852/UuqyytHeX2q+ThwALAP2bfc/ciCzohnAtuQfWOel0ubDOxI1iM7l+zYvRA4kOx13SXlXQ+8H9iWLIjOBd6d2jry2u6d2nppvmKSJgI/An5G9n47CVgoKT909Bay4Lk1cBs13pOSdgMuBk4GpgE/BX4kaVJEHARcA7wn1eOPVYpYzJPvhZem/NdWpP06Ih5Ny7en12LLVL9vS5oeETcBJwCDaV9bpfyfA3YjOw7Pzr22I6odh87U7kjU7Q+yb5Jryb6xjDyOT+uuAk7I5X0FresRHJJbfjewKJf37oo6P7F95X5q7OvW3Lo9U/7tc2mrgX2qvDYvTnknj/L6LQLenVt+Dtk3601zdZuRW/8b4M3p+WKyf9htK8p8Spuq7PcI4PqK43hUbvnzwDnpeT81vp1XO3YNtGuXUcrrJ+uF5N9XR6Z1twOH5vK+Ergrt92j+dc8pT0ETEjLU9L+98/luQ44okZdTgZ+UPF+e3ZF+cPp+YFk34A3ya2/GDg9Pb8QOC+37lDg5hr7/QRwWW55E+DPQH/l+7TG9seMHGPgCuBgYPeKtNNG2X4pcHiN/zmR9YqelUubA9xZ6zh08qOzx626xxER8fMq6TuQDZ+M+FML61C5nx1qrNsYK3PPHwKIiMq0aj2C1envdODOGmXvwIavy5/IPiy3z6X9Jff8n7l9HQd8GrhZ0p3ApyLix9V2Imk74CtkH1RTyD5U/laRrXI/O7Dx6mnXWMfl3oiYUWfZ+bquioiHK7ZZHU+eePBQ+lv1GKZv4l8m62E+LdX7ujHqmq/bPRHxeEX9dswt1zqe1cp6op0R8bikeyrKGs1i4HxJW5P1oN4aEWslTU9pLyEbVgNA0tuBD5AFalK9tq1R9jSy1+Y6SU8UQTYcPKLacehIHhpqrRVkQxAjZlas/wfZm2nEM8exr8r95IcvRrvE7D/S32bVI+8Wsg+7fx0lz71kXecRM4HH2PBDqqqIuDUi3kI2BPE54HJJT6d6e+en9L0iG0o6iuwftx4bc4neetq1sZf+rVZ2vce7Hl8HbgZ2Ta/Vx6j/tboX2ElS/rNlJtk3+UZt0E5ln7g71VtWRNyRyphH1item1YNprQtgF+nsncmGy57D9mZX1sBN/Bkuytf0/vJgufzImKr9NgyIvJBbbzHoTAOBK11GfBeSTPSN5DK09SWAm+WNFHSeOcQPixpa0k7Ae8jm+wcU0SsIvvHOkrSBEnHko23j1tkfeQPAJ+Q9A5Jz5C0iaSXSFqQsl0MvF/S7DTPMDLWPubZN5KOkjQtfftck5LXA6vIhlV2yWWfQhrCk7Qj8OEGmrISmCppywa22eh21Vn2f0iaJmlbsnHpbzeh3BFTyCbg10raHXhXxfqVbPja5i0h+3LxkfS+7ic7Q+ySjajHZcCrJc1Ncw8fBB4BftVAGdeQvQevyaVdm9KGImKkdzTyBWIVgKR3AM/PbbMSmCFpEmS9E7LAcVbqbSJpR0mNzvd0BAeC5vhRxfneP0jp5wL/H/g98Dvg+xXbfYLsQ/dvZGPd3xlHHa4g674vJTsj4/wGtj2e7INxNfA8GvtHG1VEXE52ZsmxZN/OVpKduXRFynIB2Zkti8mGjx4mm2CsxyHAjZLWkk0cvzkiHo6If5JNQP5S0hpJB5C9vi8gOyPoJzz1WIzWhpvJPnzvSOXVM2Q0nnaN5Qyys6WWAcvJ3ltnNKlsyM6e+jeys2fO5alfKk4HLkqvxZH5FZFNvB5GNsF+P/A14O3pNWxIRNxC1nP7P6ms15Kdqv3oqBtu6BdkPcb8bwCuSWlPnDYaEX8AvkTWW1hJNhf2y9w2V5GdvfQXSfentI+STXb/WtIDwM/J5oK6jtLEhhVA0iyyD4WJTfpmaGY2bu4RmJmVnAOBmVnJeWjIzKzk3CMwMys5BwIzs5Lryl8Wb7vttjFr1qx2V8PMrKtcd91190fEtMr0rgwEs2bNYmhoqN3VMDPrKpKqXubGQ0NmZiXnQGBmVnIOBGZmJdeVcwTVrFu3juHhYR5+uCuu+rqByZMnM2PGDCZOnNjuqphZCfVMIBgeHmbKlCnMmjWL3PXBO15EsHr1aoaHh5k9e3a7q2NmJdQzQ0MPP/wwU6dO7aogACCJqVOndmVPxsyKNTgI8+dnf5upZ3oEQNcFgRHdWm8zK87gIMydC48+CpMmwaJFMGdOc8ruqUBgZtZrBgdhYADuvjsLAuvXZ38HBhwIzMx6Xr4XsOmmMCHdEXnSJOjvb95+HAia7Bvf+AbXX38955xzDuvWrePYY49lk0024bzzzvNZQWbWkIGBJ3sBAMcfDzNnZkGgWb0BcCBoumXLlrHXXnvxwAMP8PrXv57999+fM888s93VMrMu1N+fffsfmRd4+9ubGwBG9MxZQxujFTPwy5cvZ5tttqG/v583vvGNDgJmttHmzMkmhT/zmeZODlcqvEcgaQLZjbf/HBGvkTQbuATYhuwm3G9r8ObUG6VVM/DLly/npJNO4oILLuC1r33t+As0s1KbM6d1AWBEO3oE7wNuyi1/DjgrInYF/gYcV0Ql8mNvIzPw43XPPfewxRZbsOeee7JixYoN1s2fP58PfehD3HzzzePfkZlZExUaCCTNAF4NnJeWBRwEXJ6yXAQcUURdRsbeJkxo3gz8smXL2HvvvVm4cCFnnnkm119/PQBLlizh4osvZvbs2ey+++7j35GZWRMVPTR0NvARYEpangqsiYjH0vIwsGMRFRkZexsYaN4M/PLly9lzzz2ZPn065513Hm9605v47W9/y2677UZ/fz8nnnji+HdiZtZkhfUIJL0GuC8irssnV8kaNbafJ2lI0tCqVauaUqc5c+DUU5s3/jYSCAAOPvhgjjzySI499liWLl3K3nvv3ZydmJk1WZE9ghcDh0k6FJgMPIOsh7CVpE1Tr2AGcG+1jSNiAbAAoK+vr2qwaLeFCxdusHzGGWcAcPbZZ3PggQe2o0pmZmMqrEcQEadGxIyImAW8GbgqIt4KXA28IWU7GriiqDoV5eSTT+aFL3xhu6thZlZVJ/yO4KPAByTdRjZncH6b62NmVipt+WVxRAwAA+n5HcB+7aiHmZl1Ro/AzMzaqKcCQURHziGPqVvrbWa9oWcCweTJk1m9enXXfaiO3Kpy8uTJ7a6KmZVUz1x9dMaMGQwPD9Os3xgUaeTm9WbWvUZuINPsS0QXoWcCwcSJE33zdzNri1beRrIIPTM0ZGbWLq24iGWRHAjMzMapFRexLFLPDA2ZmbVLKy5iWSQHAjOzJijiBjKt4qEhM7OScyAwMys5BwIzs5JzIDAzKzkHAjOzknMgMDMrOQcCM7OScyAwMys5BwIzK6XBQZg/P/tbdoX9sljSZGAxsFna7+URcZqkC4F/Af6esh4TEUuLqpeZlU+3Xy202Yq8xMQjwEERsVbSROBaSf8vrftwRFxeYF3MrMSqXS20zIGgsKGhyKxNixPTo7tuJ2ZmPaHbrxbabIXOEUiaIGkpcB9wZUQsSavOlLRM0lmSNqux7TxJQ5KGuvEuZGbWOUauFvqZz3hYCEDtuMevpK2AHwAnAauBvwCTgAXA7RHx6dG27+vri6GhoZbX08ysl0i6LiL6KtPbctZQRKwBBoBDImJFGjZ6BPgmsF876mRmVlaFBQJJ01JPAEmbAy8HbpY0PaUJOAK4oag6mZlZsWcNTQcukjSBLABdFhE/lnSVpGmAgKXACQXWycys9AoLBBGxDNi3SvpBRdXBzMyeyr8sNjMrOQcCM7OScyAwMys5BwIz6yq+WFzzFXnWkJnZuPhica3hHoGZdY1qF4uz8XMgMLOu4YvFtYaHhsysa4xcLG5gIAsCHhZqDgcCM+sqc+Y4ADSbh4bMzErOgcDMrOQcCMzMSs6BwMys5BwIzMxKzoHAzKzkHAjMzErOgcDMrOSKvGfxZEm/kfR7STdK+lRKny1piaRbJV0qaVJRdTIzs2J7BI8AB0XE3sA+wCGSDgA+B5wVEbsCfwOOK7BOZmalV1ggiMzatDgxPQI4CLg8pV8EHFFUnczMrOA5AkkTJC0F7gOuBG4H1kTEYynLMLBjkXUyMyu7QgNBRKyPiH2AGcB+wB7VslXbVtI8SUOShlatWtXKapqZlUpbzhqKiDXAAHAAsJWkkaugzgDurbHNgojoi4i+adOmFVNRM7MSKPKsoWmStkrPNwdeDtwEXA28IWU7GriiqDqZ2cbzvYN7R5H3I5gOXCRpAlkAuiwifizpD8Alks4ArgfOL7BOZrYRfO/g3lJYIIiIZcC+VdLvIJsvMLMuUe3ewQ4E3cu/LDazhvnewb3Ft6o0s4b53sG9xYHAzDaK7x3cOzw0ZGZWcg4EZmYl50BgZlZyDgRmZiXnQGBmVnIOBGZmJedAYGZWcg4EZmYl50BgZlZyDgRmZiXnQGBmVnIOBGZmJedAYGZWcg0HAklPT3cZMzOzHjBmIJC0iaR/k/QTSfcBtwArJN0o6QuSdm19Nc3MrFXq6RFcDTwLOBV4ZkTMiIjtgAOBXwOflXTUWIVI2knS1ZJuSkHkfSn9dEl/lrQ0PQ4dR3vMzKxB9dyY5uURsW5kQdJuEfHHiPgr8D3ge5Im1lHOY8AHI+J3kqYA10m6Mq07KyK+2HDtzcxs3MbsEeSDQHK8pHeNkadaOSsi4nfp+YPATcCODdTVzMxaoJ45gsqJ4dXACZLOlvQOSfs2ulNJs4B9gSUp6T2Slkm6QNLWNbaZJ2lI0tCqVasa3aWZmdVQzxzBefmFiPgscDxwOnAn2VxB3SRtQTakdHJEPAB8nWwOYh9gBfClattFxIKI6IuIvmnTpjWySzMzG0U9gWCCpE/nEyLiN8B64MSI+Eq9O0tzCd8DFkbE91NZKyNifUQ8DpwL7Fd37c3MbNzqCQTHAnMkvXMkQdLewBDZOH9dJAk4H7gpIr6cS5+ey/Y64IZ6yzQzs/Eb86yhiHhM0uuBAUn3kk3wfhx4Z0T8vIF9vRh4G7Bc0tKU9jHgLZL2AQK4C/j3Bso0M7NxGjMQSPoasAz4PPBNYDmwf0SsbGRHEXEtoCqrftpIOWZm1lz1/I5gKbAXsCcwEdgNOFfScmB5RFzSwvqZmVmL1TM0tCC/LGkGTwaGVwMOBGZmXayeoSFFRIwsR8QwMExuSKcyj5mZdY+6rjUk6SRJM/OJkiZJOkjSRcDRrameWXcbHIT587O/Zp2qnjmCQ8hOIb1Y0mxgDbA5WRD5Gdl1gpaOsr1ZKQ0Owty58OijMGkSLFoEc+a0u1ZmT1XPHMHDwNeAr6UfhG0LPBQRa1pdObNuNjCQBYH167O/AwMOBNaZ6ukRPCFdXG5Fi+pi1lP6+7OewEiPoL+/3TUyq66hQGBm9ZszJxsOGhjIgoB7A9apHAjMWmjOHAcA63y+eb2ZWcnV3SOQ9IEqyX8HrvNZQ2Zm3auRHkEfcALZRed2BOYB/WSXm/hI86tmZmZFaGSOYCrwgohYCyDpNOBy4KXAdWQXpTMzsy7TSI9gJvBobnkdsHNEPAQ80tRamZlZYRrpEXwH+LWkK8guJ/0asl8bPx34QysqZ2ZmrVd3IIiIz0j6KfASskBwQkQMpdVvbUXlzMys9Rr9HcFjwONkdxNb1/zqmJlZ0eqeI5D0PmAh2bWGtgO+LemkBrbfSdLVkm6SdGMqD0nbSLpS0q3p79aNNsLMzDZeI5PFx5HdovK0iPgkcABwfAPbPwZ8MCL2SNueKOm5wCnAoojYFViUls3MrCCNBAIB63PL66l+D+KqImJFRPwuPX8QuIns9wiHAxelbBcBRzRQJzMzG6dG5gi+CSyR9AOyAHAEcMHG7FTSLGBfYAmwfUSsgCxYSNpuY8o0M7ON08hZQ1+WNAC8mCwQHL0xl5aQtAXwPeDkiHhAqq9TIWke2a+ZmTlz5hi5zcysXvXcs/hBsrOEnkjKrYuIeEa9O0s3tvkesDAivp+SV0qannoD04H7qm0bEQuABQB9fX2+P7KZWZOMOUcQEVMi4hm5x5Tco5EgIOB84KaI+HJu1Q958p7HRwNXNNIAMzMbnyLvR/Bi4G3AckkjQ0ofAz4LXCbpOOBu4I0F1snMrPQKCwQRcS21zzKaW1Q9zMxsQ74xjfWUwUGYPz/7a2b18a0qrWcMDsLcuU/eLH7RIt8m0qwe7hFYzxgYyILA+vXZ34GBdtfIrDs4EFjP6O/PegITJmR/+/vbXSOz7uChIesZc+Zkw0EDA1kQ8LCQWX0cCKynzJnjAGDWKA8NmZmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EFghfJ8As87law1Zy/k+AWadrbAegaQLJN0n6YZc2umS/ixpaXocWlR9rDi+T4BZZytyaOhC4JAq6WdFxD7p8dMC62MF8X0CzDpbkTevXyxpVlH7s87h+wSYdbZOmCN4j6S3A0PAByPib9UySZoHzAOYOXNmgdWzZvB9Asw6V7vPGvo68CxgH2AF8KVaGSNiQUT0RUTftGnTiqqfmVnPa2sgiIiVEbE+Ih4HzgX2a2d9zMzKqK2BQNL03OLrgBtq5TUzs9YobI5A0sVAP7CtpGHgNKBf0j5AAHcB/15UfczMLFPkWUNvqZJ8flH7NzOz6to9WWxmZm3mQGA1+fpAZuXQCb8jsA7k6wOZlYd7BFaVrw9kVh4OBFaVrw9kVh4eGrKqfH0gs/JwILCafH0gs3Lw0JCZWck5EJiZlZwDgZlZyTkQmJmVnANBj/Ovg81sLD5rqIf518FmVg/3CHqYfx1sZvVwIOhh/nWwmdXDQ0M9zL8ONrN6OBD0OP862MzGUtjQkKQLJN0n6YZc2jaSrpR0a/q7dVH1MTOzTJFzBBcCh1SknQIsiohdgUVp2Ubh00HNrNmKvGfxYkmzKpIPJ7uhPcBFwADw0aLq1G18OqiZtUK7zxraPiJWAKS/27W5Ph3Np4OaWSu0OxDUTdI8SUOShlatWtXu6rSFTwc1s1Zo91lDKyVNj4gVkqYD99XKGBELgAUAfX19UVQFO4lPBzWzVmh3IPghcDTw2fT3ivZWp/P5dFAza7YiTx+9GBgEniNpWNJxZAHgYEm3AgenZTMzK1CRZw29pcaquUXVoZMNDnrIx8zao91DQ4ZPCzWz9uqas4Z6mU8LNbN2ciDoAD4t1MzayUNDHcCnhZpZOzkQFKCeiWCfFmpm7eJA0GKeCDazTuc5ghbzRLCZdToHghbzRLCZdToPDTVJrXkATwSbWadzIGiCseYBPBFsZp3MQ0NN4HkAM+tmDgRN4HkAM+tmHhpqULW5AM8DmFk3cyBowGhzAZ4HMLNu5aGhBnguwMx6kQPBKAYHYf787C94LsDMepOHhmqoNQzkuQAz6zUOBDVUGwYamQdwADCzXtIRgUDSXcCDwHrgsYjoa0c98mcEjQwDjfQIPAxkZr2qIwJB8rKIuL9dO682FORhIDMrg04KBG1VbSjo1FMdAMys93VKIAjgZ5IC+EZELKjMIGkeMA9g5syZTdmph4LMzEAR0e46IGmHiLhX0nbAlcBJEbG4Vv6+vr4YGhoa1z6rDQWBh4LMrHdJuq7aHGxH9Agi4t709z5JPwD2A2oGgo2V7wF4KMjMLNP2QCDp6cAmEfFgev4K4NPN3k9lD+Dssz0UZGYGHRAIgO2BH0iCrD7fiYj/bvZOKnsAq1f7rCAzM+iAQBARdwB7t3o/1SaD/eMwM7MOCARF8eUhzMyqK00gAPcAzMyq8dVHzcxKzoHAzKzkHAjMzErOgcDMrOQcCMzMSs6BwMys5DrionONkrQK+NMY2bYF2nZ/gxbr1ba5Xd2nV9vWq+3aOSKmVSZ2ZSCoh6Shdt3prNV6tW1uV/fp1bb1artq8dCQmVnJORCYmZVcLweCp9zlrIf0atvcru7Tq23r1XZV1bNzBGZmVp9e7hGYmVkdHAjMzEquYwOBpEMk3SLpNkmnVFm/maRL0/olkmbl1p2a0m+R9MqxypR0oaQ7JS1Nj326sG0XSLpP0g0VZW0j6UpJt6a/W/dIu06X9OfcMTu0Ve1qRdsk7STpakk3SbpR0vty+bv2mI3RrsKOWQvaNVnSbyT9PrXrU7n8s1MZt6YyJ7WqXS0TER33ACYAtwO7AJOA3wPPrcjzbuCc9PzNwKXp+XNT/s2A2amcCaOVCVwIvKFb25bWvRR4AXBDRVmfB05Jz08BPtcj7Tod+FC3HjNgOvCClGcK8Mfc+7Frj9kY7SrkmLWoXQK2SHkmAkuAA9LyZcCb0/NzgHcV8b5s5qNTewT7AbdFxB0R8ShwCXB4RZ7DgYvS88uBuZKU0i+JiEci4k7gtlRePWUWoRVtIyIWA3+tsr98WRcBRzSzMTlFt6tITW9bRKyIiN8BRMSDwE3AjlXK6qpjNka7itKKdkVErE35J6ZHpG0OSmVAa49Xy3RqINgRuCe3PMxT30xP5ImIx4C/A1NH2XasMs+UtEzSWZI2a0YjamhF20azfUSsSGWtALbb6JqPruh2AbwnHbMLWjl8QovbloYl9iX7lgk9csyqtAuKOWYtaZekCZKWAvcBV0bEkrTNmlRGrX11vE4NBKqSVnmea608jaYDnArsDrwI2Ab4aH3V3CitaFsnKLpdXweeBewDrAC+NFYFx6FlbZO0BfA94OSIeGCja7hxim5XUcesJe2KiPURsQ8wA9hP0vPr3FfH69RAMAzslFueAdxbK4+kTYEtyYYQam1bs8zUnY2IeAT4JmlYokVa0bbRrJQ0PZU1nezbTCsU2q6IWJn+MR8HzqULj5mkiWQflgsj4vu5PF19zGq1q8Bj1tL3YkSsAQaAQ8guTLdVKqPWvjpfuycpqj2ATYE7yCZrRiZ7nleR50Q2nOy5LD1/HhtO9txBNtlTs0xgevor4Gzgs93Uttx2s3jqpOoX2HDi8fM90q7puefvJxvX7Zpjlt5r3wLOrrK/rj1mY7SrkGPWonZNA7ZKeTYHrgFek5a/y4aTxe9u1XuxZe/xdldglIN5KNkZB7cDH09pnwYOS88npwNwG/AbYJfcth9P290CvGq0MlP6VcBy4Abg26SzA7qsbReTdbfXkX2rOS6lTwUWAbemv9v0SLv+Kx2zZcAP8x8y3dA24CVkQwjLgKXpcWi3H7Mx2lXYMWtBu/YCrk91vwH4ZC7/LqmM21KZm7XyvdiKhy8xYWZWcp06R2BmZgVxIDAzKzkHAjOzknMgMDMrOQcCM7OScyAwMys5BwKzCrUufZ3WfUPSablLKT+ee/7liryzJD2Urk+DpLW5dYemyxbPlLR52v5RSdu2voVmG/LvCMwqSHopsBb4VkQ8v2LdUuCFEbFe0o7AryJi5xrlzAJ+PFKGpLURsYWkuWT3xH1FRNyey38X0BcR97egWWY1uUdgViFqXPpa0h7AHyNifUp6PtkvZesm6UCy6+y8Oh8EzNpp07GzmFnyKuC/c8t7kl1uoF6bAVcA/RFxczMrZjYe7hGY1e+VbBgIGu0RrAN+BRzXzEqZjZcDgVkdJD2N7OqT+UsMN9ojeBw4EniRpI81s35m4+GhIbP6vAy4emRB0ibArkBDQzwR8U9JrwGukbQyIs5vbjXNGudAYFZB0sVAP7CtpGHgNLJbLl6ey/ZsYNxq8AAAAACISURBVDiymxk1JCL+KukQYLGk+yPiiiZU22yj+fRRszpI+h2wf0Ssa2CbWeROH60j/1349FFrA88RmNUhIl7QSBBI1gNbjvygrJaRH5QBE8nmEcwK5R6BmVnJuUdgZlZyDgRmZiXnQGBmVnIOBGZmJedAYGZWcg4EZmYl50BgZlZyDgRmZiX3P8f7Bc/lfO0vAAAAAElFTkSuQmCC\n",
 "text/plain": [
 "<Figure size 432x288 with 1 Axes>"
]
 },
 "metadata": {
 "needs_background": "light"
 },
 "output_type": "display_data"
 }
],
 "source": [
 "#Plot raw data fro better visualization\n",
 "plt.plot(1/(Kf_H2O[:,0]), Kf_H2O[:,1], 'bo', markersize=3, linewidth=0, label='K_f')\n",
 "plt.xlabel('$1/T$'+' [K]')\n",
 "plt.ylabel('log '+'(K_f)')\n",
 "plt.title('Equilibrium Constant for Formation of Water')\n",
 "plt.legend()\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Define a function named _linear_ dependent on the **(x)**, the slope **(m)** and the y-intercept **(b)**. Calculate the _linear_ function coefficients. Then, plot the curve fit function _linear_ with the obtained coefficients along with the previously plotted raw data to show comparison."
]
 },
 {
 "cell_type": "code",
 "execution_count": 13,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Coefficients for Kf : [1.31648379e+04 -3.13560258e+00]\n"
]
 }
],
 "source": [
 "def linear(x, m, b):\n",
 " return m*x+b\n",
 "\n",
 "#Calculate the linear function coefficients in the same way as Problem 4\n",
 "coeff3, pcov = curve_fit(linear, 1/(Kf_H2O[:,0]), Kf_H2O[:,1])\n",
 "print('Coefficients for Kf : ', coeff3)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 14,
 "metadata": {},
 "outputs": [
 {
 "data": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEaCAYAAADkL6tQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZyNdf/H8dcHg7qJLJVIpM1OKbQKLXd3e3K7W26FJG2qW6l+le5IpcXdIrKUIku627VIhmISIrtEKpGtiLKM8f398b3GfUxzxhwz51znzLyfj8d5zDnX+jnXOXN9zne5vpc55xAREclNibADEBGR5KUkISIiUSlJiIhIVEoSIiISlZKEiIhEpSQhIiJRKUkkITOraWZbzaxk8DrdzLoEz68ys48jlnVmdnQM295rfSk4MzvAzN41s81m9nrY8SSSmZ1uZktD2O9xZjbHzLaY2a2J3n9xoiRRAGa20sy2BSf07MdzBd2uc+4H51w551xWLvNGOefOKcC2C7R+rMzsXDObGvwzrzezKWZ2URz3VytInKUKaXutzGzVPhZrBxwKVHbOXVFI+9yd43v1bkG3Wxhy/ihxzn3mnDsuhFDuAtKdc+Wdc89EzjCzf5jZohzTJkaZ1mtfOzKza83s80KJOgUpSRTchcEJPftxc9gBRVNYJ84Y9tcOeB14BaiBP5E+AFyYyDgS4EjgG+fcrlhXzOMzWZ3jexXzMUv0551gRwILo8ybAtQ1s6qw5zg0Bg7MMa0lMDXegab85+Cc02M/H8BKoG2UeSWBJ4ANwArgJsABpXJbF+gNjAye18qxbDrQJXh+LfB5xHoOuDXYxwagP1AiYtlpwNPAL0CfyPVz7ifKvrLX3xTs45Rg+o/AOqBjlPdvwA9AzzyOXwng/4Dvg229AlTIEVvHYDsbgPsi1j0ZmAX8BqwFngqm/xCstzV4tATqAJ8CG4PtjAIq5vgc/wXMAzYDY4GywF+AbcDuiO0dnuM9PATsBDKD+Z3z+b46B7FOzeW4tAJWRTlmZYABwOrgMQAoE7kecDfwM/BqxLS7gljWAJcA5wPfBN+Le3Mc14zg814DPAeUDuZNDWL/PXivf88ZK1AX/x3ahD+JXxQx72XgeeB9YAswA6iTx/fjomAbm4Jt1g2mfwpkAduDOI7NZd3lwOUR72kyMCLHtD8i3luvYJ0twCLg0oj3sz3Y31ZgU8Tn8ETwGa4FBgEHRPscwj5XFeShkkT8XA9cADQFmuGrJOLl0mAfJwAXA50i5jXHn9wPAfrux7ab40+elYHXgDHAScDRwNXAc2ZWLpf1jgOOAMbnse1rg8dZwFFAOfxJKdJpwbbaAA+YWd1g+n+A/zjnDsIngXHB9DOCvxWd/wWegU9Y/YDD8f/0R+CTcqT2wHlAbaARcK1z7nfgr+z9q3515ErOuQeBR4Cxwfxh+XxfZwaxnJvH8cnNfUALoAn+1/HJ+ISU7TCgEv6XdteIaWWB6viS3BD8Z3cicDr+uB4VLJsF3A5UwSfYNkD34L1mH9vGwXsdGxmYmaUB7wIf479vtwCjzCyyOuof+MR6MPAtUb6TZnYsMBroAVQFJgDvmllp51xr4DPg5iCOb3LZxFT+9104I1j+8xzTvnDO7QxeLw+ORYUgvpFmVs05txjoBmQE+6oYLP8YcCz+czg64thmy+1zSE1hZ6lUfuB/gW7F/9LJflwfzPsU6Bax7DnEryRxXsTr7sCkiGV/yBHznvVz7ifKvpZFzGsYLH9oxLSNQJNcjs2pwbJl8zh+k4DuEa+Pw/8iLxURW42I+V8CHYLnU/H/zFVybPNP7ymX/V4CzMnxOV4d8fpxYFDwvBVRftXn9tnF8L6OymN7rfCll8jvVftg3nLg/IhlzwVWRqy3M/KYB9O2ASWD1+WD/TePWGY2cEmUWHoAb+b4vh2dY/urguen4385l4iYPxroHTx/GRgaMe98YEmU/d4PjIt4XQL4CWiV83saZf1rsz9j4G3gbOD4HNMezGP9ucDFUf7nDF+aqhMxrSXwXbTPIZUfqV1Xlhwucc59ksv0w/FVMtm+j2MMOfdzeJR5+2NtxPNtAM65nNNyK0lsDP5WA76Lsu3D2fu4fI8/kR4aMe3niOd/ROyrM/BvYImZfQc85Jx7L7edmNkhwDP4k1h5/Ann1xyL5dzP4ey//LyvfX0uq51zNfK57chY1zvntudYZ6P7XyeIbcHfXD/D4Bf8U/iS6YFB3LP3EWtkbD8653bniK96xOton2du29rzPp1zu83sxxzbystUYJiZHYwveV3lnNtqZtWCaafhq+oAMLN/AnfgkzhBXFWibLsq/tjMNrM9m8BXMWfL7XNISapuip81+GqNbDVzzP8d/0XLdlgB9pVzP5FVInkN8/t78Lew4oi0FH8ivDyPZVbji+PZagK72PsElivn3DLn3D/w1RqPAePN7C/k/n77BdMbOV89dTX+nzo/9meY5Py8r/0dfjm3bef3886PF4AlwDHBsbqX/B+r1cARZhZ5XqmJLwHEaq/3af5sfER+t+WcWxFsoyu+NL01mJURTCsHfBFs+0h8FdzN+B5qFYEF/O995zymG/CJtb5zrmLwqOCci0x4Bf0ckoaSRPyMA241sxrBL5ecXe3mAh3MLM3MCtpm0dPMDjazI4Db8A2v++ScW4//p7vazEqaWSd8/X6BOV/uvgO438yuM7ODzKyEmZ1mZi8Gi40Gbjez2kG7Rnbd/j57CZnZ1WZWNfjVuimYnAWsx1fVHBWxeHmCakEzqw70jOGtrAUqm1mFGNbZ7/eVz23/n5lVNbMq+HrwkYWw3Wzl8Z0BtprZ8cCNOeavZe9jG2kG/ofHXcH3uhW+J9uY/YhjHPA3M2sTtHXcCewApsewjc/w38HPIqZ9Hkyb5ZzLLlVl/7hYD2Bm1wENItZZC9Qws9LgSzX4pPJ0UErFzKqbWaztSylBSaLg3s3Rn/3NYPoQ4CPga+Ar4L851rsff0L+FV+3/loBYngbXyUwF99zZFgM616PP2luBOoT2z9hnpxz4/E9YDrhf9WtxfewejtYZDi+B85UfJXUdnxjZ36cByw0s634RuwOzrntzrk/8I2h08xsk5m1wB/fE/A9l97nz59FXu9hCf7EvCLYXn6qoQryvvalD75X1zxgPv671aeQtg2+l9eV+F4+Q/jzD47ewIjgWLSPnOF8I/BF+Mb+DcBA4J/BMYyJc24pvsT3bLCtC/HdzXfmueLepuBLmpHXOHwWTNvT9dU5twh4El/KWItve5sWsc6n+F5WP5vZhmDa3fiG9y/M7DfgE3zbU5FjQUOLxJmZ1cKfMNIK6ReliEjcqSQhIiJRKUmIiEhUqm4SEZGoVJIQEZGolCRERCSqlLziukqVKq5WrVphhyEiklJmz569wTlXNZZ1UjJJ1KpVi1mzZoUdhohISjGzmIcHUnWTiIhEpSQhIiJRKUmIiEhUKdkmkZvMzExWrVrF9u1FYnTelFC2bFlq1KhBWlpa2KGISJwUmSSxatUqypcvT61atYgY413ixDnHxo0bWbVqFbVr1w47HBGJkyJT3bR9+3YqV66sBJEgZkblypVVchMp4opMkgCUIBJMx1skgbZvh5dfhgQPpVSkkoSISJH0+efQuDFcdx3MmJHQXStJiIgkqy1b4Oab4fTTYedOmDgRWrRIaAhKEoVs8ODBdOvWDfA9rq655ho6duxIZmZmyJGJSDLLyIB+/fxfAD78EBo0gIED4bbbYP58aNs24XEVmd5NyWLevHk0atSI3377jcsuu4zmzZvTt2/fsMMSkSSVkQGvvALDh0NWFhyWtpGvzrqDQz54BerWhWnToGXL0OIr1iWJP2XuQjB//nwqVapEq1atuOKKK5QgRCSqjAxo0wYGD4adOx2XZr3O7O31qPzRa3D//TBnTqgJAopxSSL7w9m5E0qXhkmTCuezmD9/PrfccgvDhw/nwgsvLPgGRaTISk/356BD3RoG0p1LeYuv7ER+fuljGv+zcdjhAcW4JJH94WRl+b/p6QXf5o8//ki5cuVo2LAha9as2Wtev379+Ne//sWSJUsKviMRKRJanenoUmI4i6nLeXzIf1s8zo4pXyRNgoAQkoSZlTSzOWb2XvC6tpnNMLNlZjbWzEonIo5WrXwJomRJ/7dVq4Jvc968eTRu3JhRo0bRt29f5syZA8CMGTMYPXo0tWvX5vjjjy/4jkQk9X33HS0fPIdBmZ35rVZjloz5mssyetLy9OSq4AmjJHEbsDji9WPA0865Y4Bfgc6JCKJlS1/F9PDDhVvV1LBhQ6pVq8bQoUP5+9//zubNmzn22GNp1aoVN910U8F3IiKpLSsL/vMf33Npxgx44QVqLp9M078fG3ZkuUpokjCzGsDfgKHBawNaA+ODRUYAlyQqnpYt4Z57Cq9dKDtJAJx99tm0b9+eTp06MXfuXBo3Tp7io4iEZNEif81Djx5w5pmwcCF06wYlkrfmP9HlmgHAXUD54HVlYJNzblfwehVQPbcVzawr0BWgZs2acQ5z/4waNWqv13369AFgwIABnH766WGEJCLJIDMTHnvMV12ULw8jR8KVV0IKDG2TsCRhZhcA65xzs82sVfbkXBbNdWAS59yLwIsAzZo1S+zgJQXUo0ePsEMQkbDMmgWdO8O8edChg69qOuSQsKPKt0SWcU4FLjKzlcAYfDXTAKCimWUnqxrA6gTGJCISH3/8AXfdBc2bw4YN8NZbMHp0SiUISGCScM7d45yr4ZyrBXQAPnXOXQVMBtoFi3UE3k5UTCIicTFlih+Qr39/X4pYuBAuvjjsqPZLMrSW3A3cYWbf4tsohoUcj4jI/vntN7jxRt+nfvdu33XyxRehYsWwI9tvoXTIdc6lA+nB8xXAyWHEISJSaN5/3/dUWr0abr/dN1L/5S9hR1VgyVCSEBFJXRs2wNVXwwUXQIUKMH06PPVUkUgQoCQhIrJfMqY73uowhsxj6sK4cfDgg/DVV76hughJruu/RURSwOx3fmLjpd25ZPc7zLKTSHtlGI2vbhh2WHGhkoSISH45B0OGUL99PVrvnsidPMEplsGEH4tmggCVJERE8mf5crj+epg8mR0ntOLUhUNYsuvoQhsgNFmpJFHIfv75Zzp06ECdOnWoV68e559/Pt98803C9v/MM89Qt25drrrqKgBOOeUUNm3axMCBA/NcT7ddFYkiK8s3RDdsCLNnw+DBVJg5iSGTjy7UAUKTlZJEIXLOcemll9KqVSuWL1/OokWLeOSRR1i7dm2+19+9e3eBYhg4cCATJkzYM47U9OnT85UkIm+7+te//pWaNWsyYsQI0tLSChSPSEpbuBBOOQXuvNPfpWzhQujaFUqUKPQBQpOVkkQhmjx5MmlpaXt+kQM0adKEI444ggYNGuyZ9sQTT9C7d28AVq5cSd26denevTsnnHACnTt33uuE3rt3b5588kkARo4cycknn0yTJk244YYbyMrK2mv/3bp1Y8WKFVx00UU8/fTTAJQrV45evXqxfPlymjRpQs+ePXONXbddFYmwcyc89BA0bQorVsBrr8E770CNGmFHlnBFs02iRw+YO7dwt9mkCQwYkOciCxYs4MQTT4x500uXLuWll15i4MCBzJkzhx49etC9e3cAxo0bx4cffsjixYsZO3Ys06ZNIy0tje7duzNq1Cj++c9/7tnOoEGD+PDDD5k8eTJVqlTZM/3RRx9lwYIFzM3jmOi2qyKBL7/0Q2ksWOBHah0wAKpWDTuq0BTNJJFijjzySFq0aAFA06ZNWbduHatXr2b9+vUcfPDB1KxZk+eee47Zs2dz0kknAbBt2zYOKaSBwrJvu3rMMcfketvVjRs30qVLF91VT4q2P/6ABx6Ap5+GatXg3Xf9BXLFXNFMEvv4xR8v9evXZ/z48X+aXqpUqb3aGrZv377X/L/kuDKzXbt2jB8/fk8jOPj2io4dO9KvX79Cjzv7tqtDhgyhRYsWnHTSSTRt2nTPbVdvuOEGJQgp2iZPhi5dfNXSDTf4ez9UqBB2VElBbRKFqHXr1uzYsYMhQ4bsmTZz5kyWL1/OunXr2LhxIzt27OC9997LczsdOnRgzJgxjB8/nnbt/AC5bdq0Yfz48axbtw6AX375he+//z5fcZUvX54tW7ZEna/brkqxtXmzb4hu3drfAGjyZBg0SAkigpJEITIz3nzzTSZOnEidOnWoX78+vXv35vDDD+eBBx6gefPmXHDBBfv8VV6/fn22bNlC9erVqVatGgD16tWjT58+nHPOOTRq1Iizzz77T1VD0VSuXJlTTz2VBg0a5NpwrduuSnG0pP+7bKlZDzdsGPTs6W8KVJQveNhP5lxK3eQN8HemmzVr1l7TFi9eTN26dUOKqGjKvu1qXo3xOu6SctavZ8OVt1LlkzHMoyHdywyn/+RmRb4rK4CZzXbONYtlHZUkJKoePXrsV28tkaTknO/KWrcuB09+gwft3zRjFl/sakZ6etjBJS8lCREp+latgosugquugqOPZv6IOfQvez+7S5Yu8sNqFFTR7N0kIgL+7nBDhvg2h+zhNW69lSYlSzLpKEhP9wmiOFQ17S8lCREpmpYt8wPyTZnih9R48UU46qg9s1u2VHLIjyJV3ZSKjfCpTMdbktKuXdC/PzRq5EdeGDYMJk7cK0FI/hWZJFG2bFk2btyoE1eCOOfYuHEjZcuWDTsUkf+ZN88XD+66C849FxYtgk6d/DUQsl+KTHVTjRo1WLVqFevXrw87lGKjbNmy1CiGA55JEtqxA/r2hX79oFIlfzvRdu2UHApBkUkSaWlp1K5dO+wwRCTRvvjCD8i3aBFcc40fe6ly5bCjKjKKTHWTiBQzv/8Ot9/u7/ewZQu8/z688ooSRCErMiUJESlGPvnE91xauZLZzbuT1acfJ7c9KOyoiiSVJEQkdWza5KuWzj6bbVlptC09leaznqfVRQeRkRF2cEWTkoSIpIa33oJ69WDECOjVi+e6fE161ulkZfkbyWlojfhQkhCR5LZ2LbRvD5deCoccAjNmQL9+nHb2AZQuDSVLoqE14khtEiKSnJyDkSP97Yi3bvVdXHv2hLQ0wF8OMWmShtaINyUJEUk+P/wA3brBBx/4s/+wYZDLkPQaWiP+VN0kIslj924YOBDq14epU+GZZ+Czz3JNEJIYKkmISHJYutR3a/3sMzj7bD8gX61aYUdV7KkkISLh2rULHn0UGjeG+fPhpZfgo4+UIJKEShIiEp65c/11D199BZddBs8/D4cdFnZUEkElCRFJvO3b4b77oFkz+OknGD8e3nhDCSIJqSQhIok1fbovPSxZAtdeC08+6UdulaSUsJKEmZU1sy/N7GszW2hmDwXTa5vZDDNbZmZjzax0omISkQTauhVuvRVOOw22bfPtDi+9pASR5BJZ3bQDaO2caww0Ac4zsxbAY8DTzrljgF+BzgmMSUQS4eOPoUEDeO45uOkmWLAAzjkn7KgkHxKWJJy3NXiZFjwc0BoYH0wfAVySqJhEJM5++QWuu87fJe6AA3z31mefhXLlwo5M8imhDddmVtLM5gLrgInAcmCTc25XsMgqoHqUdbua2Swzm6W7z4mkgP/+1w/I9+qrvpF6zhw49dSwo5IYJTRJOOeynHNNgBrAyUBul1HmepNq59yLzrlmzrlmVatWjWeYIlIQP//sbx16+eVsrXA4w26cRcbf+oDuh56SQukC65zbBKQDLYCKZpbdy6oGsDqMmESkgJyDl1/2Q2i89x7f3/go1X74khteaEKbNuh+Dykqkb2bqppZxeD5AUBbYDEwGWgXLNYReDtRMYlIIVm50rc7XHedb6D++mteO+JutmWW0v0eUlwiSxLVgMlmNg+YCUx0zr0H3A3cYWbfApWBYQmMSUQKYvdu3xDdoIEvKjz/PEyZAscdR6tW6H4PRUDCLqZzzs0DmuYyfQW+fUJEUsmSJf6iuOnTfSli8GA48sg9s3W/h6JBV1yLSGwyM6F/f3joId+V9ZVX4OqrwexPi+p+D6lPSUJE8u+rr3zpYe5cuOIKX9V06KFhRyVxpAH+RGTftm2De+6Bk0/2XVz/+18YN04JohhQSUJE8vbZZ9ClC3zzjS9F9O8PBx8cdlSSICpJiEjufvvNj7N0xhm+D+vEiTB0qBJEMaMkISJ/9sEHvlvrCy9Ajx5+QL62bcOOSkKg6iYR+Z+NG+H22/14S/Xq+e6tLVqEHZWESCUJEfFDaowb54fUGD0a7r/f92RSgij2VJIQKe5Wr/ZtD2+9BSeeCJ98Ao0ahR2VJAmVJESKK+dg2DBfrfThh/D44/DFF0oQsheVJESKoxUroGtXP27GGWf4XkvHHBN2VJKEVJIQKU6ysmDAAGjYEL780vdemjxZCUKiUklCpLhYtMhfDPfFF3D++TBoEBxxRNhRSZJTSUKkqNu5Ex5+GJo2hWXLYNQoeO89JQjJF5UkRIqyWbN86WHePOjQAf7zHzjkkLCjkhSikoRIUfTHH3DXXdC8OWzY4Lu3jh6tBCExU0lCpKiZMsUPyPftt3D99b5ra8WKYUclKUolCZGiYvNm6NbN3wZu927fvfXFF5UgpECUJESKgvffh/r1YcgQuOMOmD8fWrcOOyopApQkRFLZ+vVw1VVwwQV+CO+MDHjySTjwwLAjkyJCSUIkFTkHY8b4ITVefx1694bZs/2d40QKkRquRVLNTz/BjTfCu+/6pDBsmL/3g0gcqCQhkiqc820O9er5kVqffNLf70EJQuIo5pKEmf0F2O6cy4pDPCKSm+XL2dz+eip8NZnNJ5xFhXFDoE6dsKOSYmCfJQkzK2FmV5rZ+2a2DlgKrDGzhWbW38w0MphIvGRlwVNPkVW/IXw1m242mGqLJpGxTglCEiM/1U2TgTrAPcBhzrkazrlDgNOBL4BHzezqOMYoUjwtWACnnAJ33smK2m1pWGIRg11XdmYa6elhByfFRX6qm9o65zKzX5jZsc65b5xzvwBvAG+YWVrcIhQpbnbuhEce8Y+KFWHMGDYc0Z4NbY2SO6F0aX+9nEgi7DNJRCaIwPVmtsI590Iey4jI/vjyS+jUCRYu9Nc/DBgAVarQEn8BdXq6TxAtW4YcpxQb+0wSZlYyRyP1RqCbmR0HfA3Mdc7NiVeAIsXCH3/A/ff7pHD44X4o77/9ba9FWrZUcpDEy0+bxNDIF865R4Hrgd7Ad/i2CRHZX5Mn+zvFPfWUH5Bv4cI/JQiRsOQnSZQ0s39HTnDOfQlkATc5556JS2QiRd2mTf4+061bQ4kSvi5p0CA46KCwIxPZIz9JohPQ0sy6ZE8ws8bALGBxvAITKdLeeccPyDdsmL/vw7x5cOaZYUcl8if5abjeZWaXAelmthqoDtwHdHHOfRLvAEWKlHXr4NZbYexYX8X09tvQrFnYUYlElZ+G64HAPOBx4CVgPtDcObc2zrGJFB3OwWuvwW23wZYt/p7Td93l+7OKJLH8VDfNBRoA3YE04FhgiJn1NbMO+d2RmR1hZpPNbHFwtfZtwfRKZjbRzJYFfw/enzcikrR+/BEuvBCuvhqOOQbmzIH/+z8lCEkJ+0wSzrkXnXM3O+fOdM5VAk4BBgG/AbF0wdgF3Omcqwu0AG4ys3pAL2CSc+4YYFLwWiT17d7tG6Lr1/c9mAYMgM8/9wP0iaSI/FQ3mXPOZb92zq0CVgEToi2TG+fcGmBN8HyLmS3Gt29cDLQKFhsBpAN3x/QuRJLNsmW+O+uUKdC2rb+NaO3aYUclErN8jd1kZreYWc3IiWZW2sxam9kIoGMsOzWzWkBTYAZwaJBAshPJIVHW6Wpms8xs1vr162PZnUji7NoF/ftDo0Ywd67vvfTxx0oQkrLyM3bTefhusKPNrDawCTgAn2A+Bp52zs3N7w7NrBx+zKcezrnfzCxf6znnXgReBGjWrFmepRaRUHz9NXTu7O8Qd/HFMHCgv3paJIXlpwvsdmAgMDAYyK8KsM05tynWnQXrvwGMcs79N5i81syqOefWmFk1YF2s2xUJ1Y4d0KcPPPooVKoE48ZBu3aQzx9AIskspjvTOecynXNr9jNBGDAMWOyceypi1jv8r7qqI/B2rNsWCU1GBjRt6pPElVfCokVwxRVKEFJkJPL2pacC1wCtzWxu8DgfeBQ428yWAWcHr0WS2oxJW5l5ag/cqafC1q0wYQKMGAGVK4cdmkihivn2pfvLOfc5EO3nVZtExSFSUIv+M5FDb+9KLbeSQSVvounwfjRvWz7ssETiIpElCZHU9uuv0Lkz9Xqcww5XmtOZys08x6czlSCk6Mp3ScLM7shl8mZgdiy9m0RS0ptvQvfusH49P13TixavP8iWzLK6S5wUebFUNzULHu8Gr/8GzMTfgOh159zjhR2cSOjWroVbboHXX4cmTeD996l+wglMuFF3iZPiIZYkURk4wTm3FcDMHgTGA2cAs/EDAIoUDc7Bq69Cjx7w++/Qty/07Alp/nbuukucFBexJImawM6I15nAkc65bWa2o3DDEgnR999Dt27w4YdwyikwdCjUrRt2VCKhiCVJvAZ8YWZv43spXYC/CvsvwKJ4BCeSULt3wwsvQK9eviTx7LO+HaKE+ndI8ZXvJOGce9jMJgCn4ZNEN+fcrGD2VfEITiRhli6FLl38KK3nnAODB0OtWmFHJRK6WH8i7QJ2B38zCz8ckQTLzPTDaTRuDAsXwssv+2omJQgRIIYkEdwkaBR+7KZDgJFmdku8AhOJu7lzoXlzuOceuOACP6RGx44aUkMkQixtEp3xty39HcDMHgMygGfjEZhI3Gzf7m8f+thjUKUKjB8Pl18edlQiSSmWJGFAVsTrLKIPsyGSnKZN88N5L10K114LTz7pR24VkVzFkiReAmaY2Zv45HAJMDwuUYkUti1b4N574fnnoWZN+Ogj30AtInmKpXfTU2aWjh/N1YCOGo5DUsGipz+i+r+7ctDmH7FbbvEXxpUrF3ZYIikhP/e43gJE3gnOIuY559xB8QhMpMB++YV119xBvQkjWMzxXFr6M/p2OJWWyg8i+bbP3k3OufLOuYMiHuUjHkoQkpzeeAPq1aPyh6N4xO6jKXOYmnUq6Yk+B7sAABDuSURBVOlhByaSWnQpqRQta9b4nkrt2kH16iwYPpM+Zfuwq6RGbBXZHwm76ZBIXDnn7wx3++2wbZu/QO7OO2lcqhSTjtWIrSL7S0lCUt/KldC1K0ycCKed5gfkO+64PbM1YqvI/lN1k6SurCx45hlo0AAyMuC552DKlL0ShIgUjEoSkpoWL/YD8k2fDued5wfkq1kz7KhEihyVJCS1ZGb66xyaNIElS+CVV2DCBCUIkThRSUJSx+zZ0KkTzJsH7dv7qqZDDw07KpEiTSUJSXoz0reRcWYvXPPmsH49vPkmjB2rBCGSACpJSFJbMHAqlW7uwjFuGS+X7Ey9l5/g5HMqhh2WSLGhkoQkp99+g+7daXDTmZR0u2jDJ3RhKJNmK0GIJJKShCSfDz7w3VoHDWL133twctn5TCnZRldMi4RA1U2SPDZs8FdMjxwJ9erB9Okc3qIF72boimmRsChJSPicg9dfh5tvhl9/hQce8Pd+KFMG0BXTImFSkpBwrV4N3bvD229Ds2bwySfQqFHYUYlIQElCEi4jA9InO9pvHU6dgXfCjh3Qvz/06AGl9JUUSSb6j5SEysiAzmet4Lkd11OHT9nc9EwqjBsKRx8ddmgikgv1bpLEycri974DmLmjIc2YyY02iIGXf6oEIZLEVJKQxFi4EDp3pu2MGXxY4ny6MYh1ZY5gUuuwAxORvChJSHzt3AmPPQYPPwwHHQSjRlGh1j+4YYqpS6tIClCSkPiZORM6d4b586FDBz8gX9WqtARanhJ2cCKSHwlrkzCz4Wa2zswWREyrZGYTzWxZ8PfgRMUjcfTHH9CzJ7RoARs3+u6to0dD1aphRyYiMUpkw/XLwHk5pvUCJjnnjgEmBa8lRWVkwKjr09l2XGN44gl/U6BFi+Cii8IOTUT2U8KShHNuKvBLjskXAyOC5yOASxIVjxSuLyduZuHp3bhq6Fms/smx8NlP/d3iKlQIOzQRKYCwu8Ae6pxbAxD8PSTagmbW1cxmmdms9evXJyxAyYf33+f4dvW5LmsIT3AnTWwe72w5K+yoRKQQhJ0k8s0596JzrplzrllV1W0nh/Xr4aqr4IILKFXlYM4qk0Gvkk+QVeZAjdYqUkSE3btprZlVc86tMbNqwLqQ45H8cA7GjIFbb4XNm+GhhziwVy8em11ao7WKFDFhJ4l3gI7Ao8Hft8MNR/KSkQGz317FlZ/fSKVp78HJJ8OwYf7eD2i0VpGiKGFJwsxGA62AKma2CngQnxzGmVln4AfgikTFI7HJmLabUWcNpW9mT9LIZOWtT1HrqVuhZMmwQxOROEpYknDO/SPKrDaJikH207ffcvg11/NcZjqfchbdSgzhusPqcI/yg0iRlzIN1xKCXbvgySehUSOqr/uKm9MGc06JSawqU0cN0yLFRNhtEpKEMjJg4Zj5dJjYmXKLZ8KFF1LqhRe46ofqVE9Xw7RIcaIkIXv5YsoOJrd9hJ67HuFXDmb1v8dw7P+1BzNaVldyECluVN0k/zNjBnXan8i9u/7NWP5OwxKLeKPU38Es7MhEJCRKEgK//w533AEtW3IQm7ms9HtcW3IkW8pUUduDSDGn6qZiLCMDvhv2KZd9cD1lV6+Abt0o89hj9Fx4ECelq+1BRJQkiq0vP97E4vPvolPWEL61o9nxfDr1u58J6KI4EfkfVTcVR++8Q90r6tMxaxiP09MPyLf5zLCjEpEkpJJEMZGRAV++t46rZtxKlUljKVGnIWfueJsvdjWjdGnU9iAiuVKSKAYypjuGtBpF/8zbKMdWfrj+YWo+dxf9NSCfiOyDkkRR9+OPVO3UjeGZE8igBV1LDOPK2vW4p7TaHkRk39QmUURlTNvNhxe/wK7j61P7+3R6pj3NmSU+Z3mZeqpaEpF8U0miCJozbhm7/tGF83ZPZVKJthw87kUuO7w2ldJVtSQisVGSKCIyMmDKpF384+enaTD4AX7fXYZODOMVruPhb4x7LldyEJHYKUkUARkZ0OOsr3l+R2eOZDbfNbmEtkue5/vMw9VzSUQKREkihWVkwGef7KDBW334fMej/EIl2pd4naZXXM7Is0w9l0SkwJQkUlRGBtzbajrP7+xCPRbzaol/cidPsbVMZW4/Sz2XRKRwKEmkmIwMmPbRVk544z4m7XyWHzmCv5X4gJpdz+P2mio5iEjhUpJIIRkZ0LfVRJ7d2ZXarOSFEjdxD/3YWaY8k/6p5CAihU9JIlX8+isH3vIv3ts5nKUcS6sSU6nb9XTuVulBROJISSIVvPkmdO9Oo/Xr6V/qHnrvfgBXpiz9VHoQkThTkkhma9fCLbfA669DkybY++9z2o4T+L90lR5EJDGUJJKRc/Dqq9CjB/zxBzzyCPzrX5CWRkuUHEQkcZQkks3338MNN8BHH8Epp8CwYXD88WFHJSLFlAb4Sxa7d8Pzz0ODBvD55/Dss/DZZ0oQIhIqlSSSwdKl0LkzTJsG554LgwfDkUeGHZWIiEoSocrMhH79oHFjWLQIXn4ZPvhACUJEkoZKEmGZM8eXHubMgXbtfPXSYYeFHZWIyF5Ukki07dvh3nvhpJNgzRp44w3fxVUJQkSSkEoSiTRtmi89LF0K110HTz4JBx8cdlQiIlGpJJEIW7b4i+JOP92XJD76CIYPV4IQkaSnJBFvH33ku7U+/zzcfDMsWADnnBN2VCIi+aIkES+//AIdO8J558GBB/prH555BsqVCzsyEZF8U5IobM7B+PFQty689hrcd5/vwXTKKWFHJiISs6RIEmZ2npktNbNvzaxX2PHstzVr4PLL4YoroEYNmDkT+vSBsmXDjkxEZL+EniTMrCTwPPBXoB7wDzOrF25UMXIOXnoJ6tWDCRPg0Udhxgxo0iTsyERECiT0JAGcDHzrnFvhnNsJjAEuDjmm/PvuO98Q3akTNGwI8+bB3XdDKfUuFpHUlwxJojrwY8TrVcG0vZhZVzObZWaz1q9fn7DgosrK8g3RDRrAF1/AwIGQng7HHht2ZCIihSYZkoTlMs39aYJzLzrnmjnnmlWtWjUBYeVh8WJ/zcNtt8EZZ8DChXDjjVAiGQ6niEjhSYaz2irgiIjXNYDVIcWSt8xM6NvXtzUsXQqvvOLbIGrWDDsyEZG4SIaK85nAMWZWG/gJ6ABcGW5IuZg927c7zJsH7dv7qqZDDw07KhGRuAq9JOGc2wXcDHwELAbGOecWhhtVhG3boFcvaN4c1q+HN9+EsWOVIESkWEiGkgTOuQnAhLDj+JOpU6FLF1i2zA/M98QTULFi2FGJiCRM6CWJpPTbb9C9O5x5JuzaBZ98AkOHKkGISLGjJJHThAm+W+ugQXD77TB/PrRpE3ZUIiKhSIrqpqSwYYNPCiNH+iunp0+HFi3CjkpEJFQqSTjnG6Lr1YMxY+D+++Grr5QgREQo7iWJ1av9RXDvvAMnnujbHho1CjsqEZGkUTxLEs75huh69eDjj6F/fz+0hhKEiMheil9JYsUKuP56+PRT33tp6FA4+uiwoxIRSUrFqyQxYIDvuTRzJgwe7BOFEoSISFTFqySxeDG0bu27t9aoEXY0IiJJr3gliWefhbQ0sNwGnhURkZyKV5IoXTrsCEREUkrxapMQEZGYKEmIiEhUShIiIhKVkoSIiESlJCEiIlEpSYiISFRKEiIiEpU558KOIWZmth74fj9XrwJsKMRw4k3xxpfijb9Ui7kox3ukc65qLBtPySRREGY2yznXLOw48kvxxpfijb9Ui1nx7k3VTSIiEpWShIiIRFUck8SLYQcQI8UbX4o3/lItZsUbodi1SYiISP4Vx5KEiIjkk5KEiIhElXJJwszOM7OlZvatmfXKZX4ZMxsbzJ9hZrUi5t0TTF9qZufua5tmVjvYxrJgmzHfkCLB8b5sZt+Z2dzg0STWeOMY83AzW2dmC3Jsq5KZTQyO8UQzOzjJ4+1tZj9FHOPzw47XzI4ws8lmttjMFprZbRHLJ93x3Ue8yXh8y5rZl2b2dRDvQxHL17YkO0fsI97YzxHOuZR5ACWB5cBRQGnga6BejmW6A4OC5x2AscHzesHyZYDawXZK5rVNYBzQIXg+CLgxyeN9GWiXbMc4mHcGcAKwIMe2Hgd6Bc97AY8leby9gX8l0/EFqgEnBMuUB76J+E4k3fHdR7zJeHwNKBcskwbMAFok8Tkir3hfJsZzRKqVJE4GvnXOrXDO7QTGABfnWOZiYETwfDzQxswsmD7GObfDOfcd8G2wvVy3GazTOtgGwTYvSdZ4Y4wr0THjnJsK/JLL/iK3lSzHOK94C6rQ43XOrXHOfRXEvQVYDFTPZVtJcXz3EW9BxSNe55zbGiyfFjxcsp4josUbY1x7pFqSqA78GPF6FX/+cu1Zxjm3C9gMVM5j3WjTKwObgm1E21cyxZutr5nNM7OnzaxMjPHGK+a8HOqcWxNsaw1wSJLHC3BzcIyH70f1TVzjDaoimuJ/PUKSH99c4oUkPL5mVtLM5gLrgInOuRkk7zkiWrzZYjpHpFqSsFym5cyQ0ZYprOmxSGS8APcAxwMnAZWAu/MXZr7iyc8yhXHMYpXoeF8A6gBNgDXAk/sKMJ+x5GeZPNc1s3LAG0AP59xvMcYVTaLjTcrj65zLcs41AWoAJ5tZg3zua18SGS/sxzki1ZLEKuCIiNc1gNXRljGzUkAFfLVBtHWjTd8AVAy2EW1fyRQvQTHeOed2AC8RVJ0kQcx5WWtm1YJtVcP/8knaeJ1za4N/wN3AEGI/xnGJ18zS8CfcUc65/0Ysk5THN1q8yXp8I+LbBKQD55G854ho8e7fOSKWBoywH0ApYAW+kSa7kad+jmVuYu9GnnHB8/rs3cizAt/IE3WbwOvs3SjVPcnjrRb8NWAA8GgyHOOI9Wrx54bg/uzdsPp4ksdbLeL57fg64bC/Ewa8AgzIZX9Jd3z3EW8yHt+qQMVgmQOAz4ALkvgckVe8MZ8jCv1EHu8HcD6+N8Ry4L5g2r+Bi4LnZYMP7lvgS+CoiHXvC9ZbCvw1r20G048KtvFtsM0ySR7vp8B8YAEwkqCHQ5LEPBpffZCJ/wXUOZheGZgELAv+VkryeF8NjvE84B0iTmphxQuchq9mmAfMDR7nJ+vx3Ue8yXh8GwFzgpgWAA8k8zliH/HGfI7QsBwiIhJVqrVJiIhIAilJiIhIVEoSIiISlZKEiIhEpSQhIiJRKUmIiEhUShIiOViUYcKDeYPN7MGIoZZ3Rzx/KseytcxsWzCGDma2NWLe+cHw0jXN7IBg/Z1mViX+71Ak/3SdhEgOZnYGsBV4xTnXIMe8ucCJzrksM6sOTHfOHRllO7WA97K3YWZbnXPlzKwN/r7E5zjnlkcsvxJo5pzbEIe3JbJfVJIQycFFGSbczOoC3zjnsoJJDfBXr+abmZ2OH5Pob5EJQiRZldr3IiIS+CvwYcTrhvjhDfKrDPA20Mo5t6QwAxOJF5UkRPLvXPZOErGWJDKB6UDnwgxKJJ6UJETywcwOxI+sGTkUc6wlid1Ae+AkM7u3MOMTiRdVN4nkz1nA5OwXZlYCOAaIqdrIOfeHmV0AfGZma51zwwo3TJHCpSQhkoOZjQZaAVXMbBXwIP4Wm+MjFjsaWOX8zVti4pz7xczOA6aa2Qbn3NuFELZIXKgLrEg+mNlXQHPnXGYM69QiogtsPpZfibrASpJRm4RIPjjnToglQQSygArZF9NFk30xHZCGb7cQSRoqSYiISFQqSYiISFRKEiIiEpWShIiIRKUkISIiUSlJiIhIVEoSIiISlZKEiIhEpSQhIiJR/T8VmW/YS2SybAAAAABJRU5ErkJggg==\n",
 "text/plain": [
 "<Figure size 432x288 with 1 Axes>"
]
 },
 "metadata": {
 "needs_background": "light"
 },
 "output_type": "display_data"
 }
],
 "source": [
 "xfit = np.arange(0,0.0035,0.00005) #Define new array for x\n",
 "plt.plot(1/(Kf_H2O[:,0]), Kf_H2O[:,1], 'bo', markersize=3, linewidth=0, label='K_f')\n",
 "plt.plot(xfit, linear(xfit, *coeff3), color='red', label='Curve fit '+'K_f')\n",
 "plt.xlabel('$1/T$'+' [K]')\n",
 "plt.ylabel('log '+'(K_f)')\n",
 "plt.title('Equilibrium Constant for Formation of Water')\n",
 "plt.legend()\n",
 "plt.show()"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Define functions for the partial molar Gibbs free energy as a function of both nonstoichiometry and temperature, make sure to replace the expression for oxygen partial pressure into one of the functions. Delta(nonstoichiometry) is represented as d."
]
 },
 {
 "cell_type": "code",
 "execution_count": 15,
 "metadata": {},
 "outputs": [],
 "source": [
 "#Define variables and fixed parameters\n",
 "R = 0.008314 #(kJ/mol K)\n",
 "T = 1273 #(K)\n",
 "df = 0.1 #(moles)\n",
 "n_H2O = df #(moles)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 16,
 "metadata": {},
 "outputs": [],
 "source": [
 "def Gibbs1(d):\n",
 " return -R*T*np.log((n_H2O-(df-d))/((df-d)*10**(linear((1/T), *coeff3))))\n",
 "def Gibbs2(d):\n",
 " return poly(d, *coeff1)-poly(d, *coeff2)*T/1000"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Trial and error approach. Iteratively input values for delta such that $0.0 < \\delta < \\delta_f$. Modify values in both functions until the result is approximately the same. If we substract both functions the value should get close to zero when the function values are the same."
]
 },
 {
 "cell_type": "code",
 "execution_count": 17,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "-30.502246290666164\n"
]
 }
],
 "source": [
 "#Try d=0.08\n",
 "attempt = Gibbs1(0.08)-Gibbs2(0.08)\n",
 "print(attempt)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 18,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "-41.151086232985364\n"
]
 }
],
 "source": [
 "#Try d=0.09\n",
 "attempt = Gibbs1(0.09)-Gibbs2(0.09)\n",
 "print(attempt)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 19,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "-12.975066084019687\n"
]
 }
],
 "source": [
 "#Try d=0.06\n",
 "attempt = Gibbs1(0.06)-Gibbs2(0.06)\n",
 "print(attempt)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 20,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "-3.0405284425706327\n"
]
 }
],
 "source": [
 "#Try d=0.05\n",
 "attempt = Gibbs1(0.05)-Gibbs2(0.05)\n",
 "print(attempt)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">**Solution:** $\\delta = 0.05$ approximately\n",
 "___ "
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Problem 6\n",
 "Given a temperature of operation $T=1273 K$ for Ceria and an initial amount of moles of water $n_{H_2O,i}= \\delta_f = 0.1$. Solve for $\\delta$ and the H_2 yield. Create a solver/minimizer using the _minimize_ function from the _scipy.optimize_ library.\n",
 "\n",
 "**NOTE:** For this we will use Python, and remember that $H_2 = \\delta_f - \\delta $, which is the difference between the final and initial nonstoichiometries."
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Define the function _objective_ , which is the absolute value of the difference between both partial molar Gibbs free energy expressions, in that way we guarantee the result gets as close possible to zero. The function _objective_ is only dependent on delta **(d)**, an array with multiple elements. The first element **d[0]** is the one we will be solving for, while the rest belong to the different coefficients we previously found."
]
 },
 {
 "cell_type": "code",
 "execution_count": 21,
 "metadata": {},
 "outputs": [],
 "source": [
 "#Import necessary libraries for minimization procedure\n",
 "from scipy.optimize import minimize\n",
 "def objective(d):\n",
 " return np.abs(((d[1]*d[0]**3+d[2]*d[0]**2+d[3]*d[0]+d[4])-(d[5]*d[0]**3+d[6]*d[0]**2+d[7]*d[0]+d[8])*T/1000)\\\n",
 " +(R*T*np.log((n_H2O-(df-d[0]))/((df-d[0])*10**(linear((1/T), *coeff3))))))"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">When solving for **d[0]** we do not want to vary any of the other elements from delta **(d)**. Therefore, we are setting every other element to its respective coefficient value via constraints:"
]
 },
 {
 "cell_type": "code",
 "execution_count": 22,
 "metadata": {},
 "outputs": [],
 "source": [
 "con1 = {'type': 'eq', 'fun': lambda d: d[1]-coeff1[0]}\n",
 "con2 = {'type': 'eq', 'fun': lambda d: d[2]-coeff1[1]}\n",
 "con3 = {'type': 'eq', 'fun': lambda d: d[3]-coeff1[2]}\n",
 "con4 = {'type': 'eq', 'fun': lambda d: d[4]-coeff1[3]}\n",
 "con5 = {'type': 'eq', 'fun': lambda d: d[5]-coeff2[0]}\n",
 "con6 = {'type': 'eq', 'fun': lambda d: d[6]-coeff2[1]}\n",
 "con7 = {'type': 'eq', 'fun': lambda d: d[7]-coeff2[2]}\n",
 "con8 = {'type': 'eq', 'fun': lambda d: d[8]-coeff2[3]}\n",
 "constraints_d = [con1, con2, con3, con4, con5, con6, con7, con8]"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">The minimization method we are using, **(SLSQP)**, requires a set of initial guesses and boundaries for every value. Define those parameters, then minimize the _objective_ function."
]
 },
 {
 "cell_type": "code",
 "execution_count": 23,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Value of Delta is: 0.0472257161777355\n"
]
 },
 {
 "name": "stderr",
 "output_type": "stream",
 "text": [
 "C:\\Users\\antma\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:5: RuntimeWarning: divide by zero encountered in log\n",
 " \"\"\"\n"
]
 }
],
 "source": [
 "initial_guess = np.array([0.07, 1, 1, 1, 1, 1, 1, 1, 1])\n",
 "b = (-50000, 50000)\n",
 "bounds_d = ((0.0,df-0.0001), b, b, b, b, b, b, b, b)\n",
 "solution = minimize(objective, initial_guess, method='SLSQP', constraints=constraints_d, options={'disp': False}, bounds=bounds_d)\n",
 "print('Value of Delta is: ', solution.x[0])"
]
 },
 {
 "cell_type": "code",
 "execution_count": 24,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "H_2 yield is: 0.052774283822264505\n"
]
 }
],
 "source": [
 "print(\"H_2 yield is: \",df-solution.x[0])"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">**Solution:** $\\delta = 0.0472$ and $H_2 = 0.0528$\n",
 "___"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Problem 7\n",
 "Given 6 different temperatures of reduction $T_H=1573,1673,1773,1873,1973,2073 K$, temperature of oxidation $800K <T_L<1200K$, and oxygen partial pressure ${p_O}_2=0.00001$ for Ceria. Compute H_2 yield to reproduce data from Chueh et al. **Figure 17.a** \n",
 "\n",
 "**NOTE:** For this we will use Python, and remember that $n_{H_2O,i}= \\delta_f$ (initial moles of water is equal to the nonstoichiometry after reduction). "
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Perform minimization procedure to find the nonstoichiometry after reduction **(d_red)** knowing the relationship in between ${p_O}_2$, T, and $\\delta$ given by (1.52): \n",
 "\\begin{equation*}\n",
 "\\ln {p_O}_2 (\\delta,T)^{1/2} = -\\frac{1}{T} \\frac{\\Delta h_o (\\delta)}{R} + \\frac{\\Delta s_o (\\delta)}{R} \\quad \\quad \\text{(1.52)}\n",
 "\\end{equation*} \n",
 "Define function _objective_red_ depending only on delta **(d)** similar to Problem 6. However, the minimization procedure will repeat using a _for loop_ for every temperature of reduction **(T_red)**. Then, the values of delta **(d)** will be stored in the array **(d_red)** for later use."
]
 },
 {
 "cell_type": "code",
 "execution_count": 25,
 "metadata": {},
 "outputs": [],
 "source": [
 "#Define variables and fixed parameters\n",
 "T_red = np.array([2073, 1973, 1873, 1773, 1673, 1573]) #(K)\n",
 "O_pp = 1e-5\n",
 "d_red = np.array([])"
]
 },
 {
 "cell_type": "code",
 "execution_count": 26,
 "metadata": {},
 "outputs": [],
 "source": [
 "for i in range(0, T_red.size):\n",
 " def objective_red(d):\n",
 " return np.abs(np.log(O_pp**0.5)+((d[1]*d[0]**3+d[2]*d[0]**2+d[3]*d[0]+d[4])/(T_red[i]*R))\\\n",
 " -((d[5]*d[0]**3+d[6]*d[0]**2+d[7]*d[0]+d[8])/(1000*R)))\n",
 " \n",
 " #Define constraints to their respective coefficients values \n",
 " con1 = {'type': 'eq', 'fun': lambda d: d[1]-coeff1[0]}\n",
 " con2 = {'type': 'eq', 'fun': lambda d: d[2]-coeff1[1]}\n",
 " con3 = {'type': 'eq', 'fun': lambda d: d[3]-coeff1[2]}\n",
 " con4 = {'type': 'eq', 'fun': lambda d: d[4]-coeff1[3]}\n",
 " con5 = {'type': 'eq', 'fun': lambda d: d[5]-coeff2[0]}\n",
 " con6 = {'type': 'eq', 'fun': lambda d: d[6]-coeff2[1]}\n",
 " con7 = {'type': 'eq', 'fun': lambda d: d[7]-coeff2[2]}\n",
 " con8 = {'type': 'eq', 'fun': lambda d: d[8]-coeff2[3]}\n",
 " constraints_red = [con1, con2, con3, con4, con5, con6, con7, con8]\n",
 " \n",
 " #Define initial guess and bounds\n",
 " ini_guess_red = np.array([0.03, 1, 1, 1, 1, 1, 1, 1, 1])\n",
 " b = (-50000, 50000)\n",
 " bounds_red = ((0.0001,0.2), b, b, b, b, b, b, b, b)\n",
 " \n",
 " #Minimize function objective_red\n",
 " sol_red = minimize(objective_red, ini_guess_red, method='SLSQP', constraints=constraints_red, options={'disp': False}, bounds=bounds_red)\n",
 " d_red = np.append(d_red, sol_red.x[0])"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ">Perform minimization procedure to find nonstoichiometry after oxidation **(d_ox)** similar to Problem 6. Define function _objective_ox_ depending only on delta **(d)**. The minimization procedure will repeat using a _for loop_ for different temperatures of oxidation in the range $800K <T_{ox}< 1200K$. Then the values of delta **(d)** will be stored in the **(H_2)** array, remembering that $H_2 = \\delta_{red} - \\delta_{ox}$."
]
 },
 {
 "cell_type": "code",
 "execution_count": 27,
 "metadata": {},
 "outputs": [],
 "source": [
 "#Define variables and fixed parameters\n",
 "n_H2O = d_red*1\n",
 "T_ox = np.arange(800,1200,10)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 28,
 "metadata": {},
 "outputs": [
 {
 "name": "stderr",
 "output_type": "stream",
 "text": [
 "C:\\Users\\antma\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:6: RuntimeWarning: divide by zero encountered in log\n",
 " \n"
]
 },
 {
 "data": {
 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEOCAYAAAC0BAELAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9e3xW1ZX//965cgkQ7oSEcJdrABMg2FHEb4viGL8WRBBvWCxgq/7qzHRqnelIoeWrfc3Md7TTfscIUqdWwanWNrWCFRxHW+UqIQlQBBElIchF7oHkSbJ+f6zn5DwnCZggeRKS9X691mufs88+5zk7gXyetffaazsRwTAMwzAuNTHN/QKGYRhG68QExjAMw2gSTGAMwzCMJsEExjAMw2gSTGAMwzCMJsEExjAMw2gSoiowzrlpzrldzrk9zrnv13P9b51zO5xzBc65dc65/hHX5jrndodtbkR9lnOuMPzMnzrnXLT6YxiGYZwfF611MM65WOBDYCpQDGwC5ojIjog21wEbRKTMOfctYIqIzHbOdQM2A+MBAbYAWSJyzDm3EfgOsB54HfipiKyOSqcMwzCM8xJND2YisEdE9opIBbAKuCWygYj8t4iUhU/XA2nh4xuAN0XkcxE5BrwJTHPOpQCdReR9UaX8JfD1aHTGMAzDuDBxUfysVGB/xHkxkH2B9vcBnidS372pYSuup74OzrkFwAKAjh07Zg0fPrwx724YhtHm2bJlyxER6dnQ9tEUmPrmRuodn3PO3YUOh137Bfc2+Jki8gzwDMD48eNl8+bNX/S+hmEYRgTOuU8a0z6aQ2TFQL+I8zTgQO1GzrmvAf8I/G8RKf+Ce4vxh9HO+0zDMAwj+kRTYDYBQ51zA51zCcDtQF5kA+fclUAuKi6HIi69AVzvnOvqnOsKXA+8ISKlwCnn3KRw9Ng9wO+i0RnDMAzjwkRtiExEKp1zD6JiEQusEJHtzrklwGYRyQP+GUgCfh2ONv5URP63iHzunPsRKlIAS0Tk8/Dxt4DngPbonI1FkBmGYbQAoham3JKwORjDMIzG45zbIiLjG9reVvIbhmEYTYIJjGEYhtEkmMAYhmEYTYIJjGEYhtEkmMAYhmEYTYIJjGEYhtEkmMAYhmEYTYIJTBOwbNkyxo0bx7hx44iJiak5/tu//dsv/ez9+/dz3XXXMWLECEaNGsVTTz0VuL5mzRqGDRvGkCFDeOKJJwDYtWtXzTuMGzeOzp078+STTwJw7tw5Jk6cyNixYxk1ahSLFi2qeVZubi73338/AKFQiLvvvpu5c+cSCoW+dD8Mw/hynDhxgunTp5OVlUVGRgbLly9v7leqi4i0OcvKypJoUFxcLOnp6Zf0mQcOHJAtW7aIiMjJkydl6NChsn37dhERqayslEGDBslHH30k5eXlMmbMmJprHpWVldK7d2/Zt2+fiIhUV1fLqVOnRESkoqJCJk6cKO+//76IiHz729+Wn//853LixAn56le/Kv/wD/9wSftiGMbF8+yzz8rdd99dc15WVtbkn4lmXWnw31rzYJqQoqIiMjIyLukzU1JSyMzMBKBTp06MGDGCkpISADZu3MiQIUMYNGgQCQkJ3H777fzud8HUbOvWrWPw4MH076+bhTrnSEpKAtRLCYVCeJuCFhYW0q1bN6ZMmcJtt93G0qVLL2lfDMO4eDIzM/mf//kfxo8fz6JFi0hMTGzuV6pDNNP1tzkKCwsZPXp0g9tfc801nDp1qk79v/zLv/C1r32tTv2+ffvYunUr2dm6rU5JSQn9+vlJp9PS0tiwYUPgnlWrVjFnzpxAXVVVFVlZWezZs4cHHnig5nmFhYU89NBDrFixgptvvrnB/TAMo2k5ceIE3/ve9ygoKKBjx478r//1vxg3bhzTp09v7lcLYB5ME1KfB3PLLf4mnrfddhtVVVU15++++y75+fl1rD5xOX36NLfeeitPPvkknTt3BnS4szaeNwJQUVFBXl4et912W6BNbGws+fn5FBcXs3HjRoqKiti/fz9JSUlkZGRQWlp6cT8AwzCahNzcXG644Qa6dOlCXFwcV111FQcPHgTgn/7pn5r57XxMYJqQ2h7M/v37SUlJqTmvrq4mNja25vyaa64JTMZ7tnbt2sBzQ6EQt956K3feeSczZsyoqU9LS2P/fn/jz+LiYvr27Vtzvnr1ajIzM+ndu3e975ucnMyUKVNYs2YNBQUFjB07lhdeeIGlS5eydevWi/9BGIZxSdm6dSujRo0KnGdkZHDw4EEqKyub8c2C2BBZE1FdXc3u3buJ3Jp5y5Yt7Nixg/vvv5+zZ88G/viDejBfhIhw3333MWLEiDpRaRMmTGD37t18/PHHpKamsmrVKl588cWa6ytXrqwzPHb48GHi4+NJTk7m7NmzrF27lkceeYTCwkIyMjJISUlh+fLlzJ49m02bNtGlS5eL+XEYhnEJ6dq1K1u3bmXatGn84Q9/4OTJk3zlK1/hjTfeYNy4cc39ejWYB9NE7Nmzh7S0tMDE25YtW/jXf/1Xnn76aWbNmkVWVlajn/vnP/+Z559/nrfeeqvGw3n99dcBiIuL42c/+xk33HADI0aMYNasWTXfcsrKynjzzTcDHg9AaWkp1113HWPGjGHChAlMnTqVnJycGoEBmDp1KrNmzWLevHkX++MwDOMS8vd///e8+uqrjB07lmXLlvGb3/yGmJgY8vPzW5TA2H4wUWT69Om89NJLJCQksGjRImbOnHnJo8wMw2i73HfffSxbtoyYmKbxHRq7H4wJjGEYhtEgbMOxpqSqCtqgIBuGYVwMUZ3kd85NA54CYoHlIvJEreuTgSeBMcDtIvJyuP464N8img4PX/+tc+454FrgRPjavSKS3yQduOUWeP11SEw8vyUkQFzc+a1DB0hKqt86dICYGHDOLyPNu78+i4/XNoZhGC2Fxiz7/zKGispHwCAgAdgGjKzVZgAqLr8EZp7nOd2Az4EO4fPnztf2fHbRqWJ+9StZdM06UTdGbXPOY7L5+kcDdYsGPCcyebKkxB+uqctsv11k5EiZn/RioG0JKZJHTqAul/kiEKjLIU8EJIe8QL2A5DI/UJeXer+UjL0xUDd/5Lsijz4qmamlNXUp3c6JbNokix46GuzTZrVAnxbpjyAlxa/LzNS6+fODbUtKRPLygnW5udo20KccrcvJCdaLaPtAn/L0uYE+zde2mZl+XUqK1i1aJNYn65P1qVafvM+9WGhkqpiozcE4564CfigiN4TPHw0L3OP1tH0OeE3CHkytawuAa0Xkzi9qez5azBxMZSWcOQOnT6udOQPV1f6/jchjEW1/9iyUlWnbsrKgnT4Np06d306c0GecD+egWzfo0SNoPXtq2bu3Wp8+at27q6dlGEaboLFzMNEcIksF9kecFwPZF/Gc24H/W6tuqXPuMWAd8H0RKb+4V4wycXHQpYtaNBBRITp2DI4fV/OOjx2Do0fhyBHfPv4YNm2Cw4ehvgzKsbHQq5cvOqmpkJampWdpaSpaNnxnGG2OaApMfX9hGuU+OedSgAzgjYjqR4GD6LDbM8AjwJJ67l0ALABIT09vzMe2HpyDjh3V0tIafp+IekCffQYHD6p5x15ZWgr5+Xpe2ytu107Fpn9/SE+vW/brp20Mw2hVRFNgioF+EedpwIFGPmMW8KqI1HydFhEvUVa5c+4XwHfru1FEnkEFiPHjx0dnXLC14Bx07qw2dOiF24ZCKjYlJUHbvx8++QTefBMOHKgrQikpMHAgDBpUt+zbV70lwzAuK6IpMJuAoc65gUAJOtR1RyOfMQf1WGpwzqWISKnTrI5fB4ouxcsaF0l8vHolF/ISKypUdD75BD79VMt9+2DvXnjnHXjxRZ1/8khIULEZMkQFbsgQ/zg9XYcaDcNocUTtf6aIVDrnHkSHt2KBFSKy3Tm3BI1MyHPOTQBeBboCNzvnFovIKADn3ADUA/qfWo9+wTnXEx2Cywfuj0qHjIvHE4yBA+u/XlGhwvPxxyo6e/fCnj1q//3fOo/kER+vz7niCrVhw9SuuELnhWzuxzCaDVvJb1xeiOicz+7dvuh8+KHa7t1w7pzftnNnX3SGD4cRI9SGDFGRMwyjUbTkKDLD+PI4p/M1KSkweXLwWnW1zvXs2uXbhx/qsNsLL/jtYmNVZEaMUOEZOVJtxAhdtGoYxiXBBMZoPcTEaGRa//5w/fXBa6dPq+Ds3OnbX/4Cr73mrw1yDgYMgFGjVHC8cuRIEx7DuAhMYIy2QVISZGWpRRIK6TDbjh2wfbtfvvGGv/bHOY1mGz06aFdcYUNthnEBTGCMtk18vD83c+utfn0oBB99pGKzfTsUFam99pomPQWNXhs2DDIyYMwYv+zXz4ILDAOb5G8y5s2bx2uvvUavXr0oKvIjp5966imWLVuGiDB//nwefvhhdu3axezZs2va7N27lyVLlvDwww9z7tw5Jk+eTHl5OZWVlcycOZPFixcDui/31q1befrppwmFQsybN4+YmBiWL19OfHx8k/avzVJerkNtnuAUFmq5b5/fpksX9XA80Rk7VstOnZrttQ3jUmCT/C2Ee++9lwcffJB77rmnpq6oqIhly5axceNGEhISmDZtGjfddBPDhg0jP18TQFdVVZGamsr06dMBSExM5K233iIpKYlQKMTVV1/NjTfeyKRJkygoKGDMmDGcPHmSGTNmkJ2dzdKlS5ulv22GxEQVjjFjgvUnT6rQFBSo6BQU6HqeEyf8NoMG6X1jx/rlwIGWz81otZjANBGTJ09mX+S3WmDnzp1MmjSJDuEJ42uvvZZXX32V733vezVt1q1bx+DBg+nfvz8AzjmSkpIACIVChEIhXHj4pbCwkGuuuYYpU6awcOFCFi5cGIWeGfXSuTN85StqHiK6nqegQG3bNi1/9zs/k0FSkorNuHEqOOPGqfdjQQVGK8AEJoqMHj2af/zHf+To0aO0b9+e119/nfHjg97mqlWrmDNnTqCuqqqKrKws9uzZwwMPPEB2tuYILSws5KGHHmLFihXcfPPNUeuH0UCc86PaIn8/ZWU6r7Ntm2+/+hX8v/+n12NiNIBg3DjfrrxSE4saxmWECUwUGTFiBI888ghTp04lKSmJsWPHEheR5qSiooK8vDwefzy4g0FsbCz5+fkcP36c6dOnU1RURJcuXUhKSmLo0KGUlpbW/iijJdOhA0yYoOYhovM4+fkqOPn58P77sGqV3yYlxRcbrxw0yIbYjBaLCUyUue+++7jvvvsA+Id/+AfSIrIar169mszMTHr37l3vvcnJyUyZMoU1a9YwYsQIxo4dy7Jly5g0aRITJkzgyiuvjEofjCbAOT99Tnj+DdBtFDzB2bpVyzff9NfudOqkQ2uZmSo4V16p63YsyMNoAZjARJlDhw7Rq1cvPv30U37zm9/w/vvv11xbuXJlneGxw4cPEx8fT3JyMmfPnmXt2rU88sgjFBYWkpGRQUpKCsuXL2f27Nls2rSJLtHaW8aIDl27wpQpah7nzul6na1bfXv2Wd2EDnRtzujRKjqejRkD7ds3Rw+MNowJTBMxZ84c3n77bY4cOUJaWhqLFy/mvvvu49Zbb+Xo0aPEx8fz85//nK5duwJQVlbGm2++SW5ubuA5paWlzJ07l6qqKqqrq5k1axY5OTmsXLmSm266CYCpU6cya9Ys5s2bxyuvvBL1vhpRpl07Xzg8qqp0wegHH/ii8+qrsHy5Xo+N1bU+V17p3ztunAYnGEYTYetgDKO1IqK52T74IGiRc3ZXXKFik5XlC09ycvO9s9GisXUwhmEozvl783z96359aal6OFu2qOC8914wmGDwYF90POHp1i36729c9pjANIanntJFdLGxGrlTu4yJ0Yy+FRVqoVDwOBTSCKLOnXW1t7dLZKQlJvqWkBA8T0zUcfSEBEtFYlw8Xjbqv/5rv+7w4aDobN4Mv/61f33gQF9wPDPRMb4IEWlzlpWVJRfF3XfLoqR/ER17UNucdK1s7nBNoG5RuydEeveWlJiDNXWZ7beLZGbK/C4vBdqWkCJ55ATqcpkvAoG6HPJEQHLIC9RLWprk9vpBoC4v+8dSMuPBQN387G0iubmSOfBoTV1KzwqR4mJZ9Gh5sE+b1QJ9WqQ/gpQUvy4zU+vmzw+2LSkRycsL1uXmattAn3K0LicnWC+i7QN9ytPnBvo0X9tmZvp1KSlat2iRWJ8uVZ+G7xa57TbJ6bA22KeBAyU38+nLs0+t8ffUgD55n3uxoJtD0lCzOZjmpKpK08ifPOlbeXnQKir843Pn1MrK4OzZunbmjNrp00E7e/aL3yUuTneATEur3/r2VQ+rUyfLINyWOXZMPZwtW9TL2bJFdxz1GDwYxo9XD2f8eB1es8jGVkNj52BMYNoCnpCdOqW5sWrbyZNw/DgcOADFxWr79/thr7WJj1ehSUpS69RJ/4ikpKgQ1VcmJka3z0b0+Pxzf1jNE53INEnDhqnYeHblldCxY7O9rnHxmMA0gDYnMBeDiAqPJzgHDqhAnTrle0be8alT+s324EGdQPYWAUbSvbumsU9L0zLSPC/JRKj1cOSI7+V4Vlys12JiNGR6/Hg/o8HYsfb7vwxo0QLjnJsGPAXEAstF5Ila1ycDTwJjgNtF5OWIa1VAYfj0UxH53+H6gcAqoBvwAXC3iFRc6D1MYJqQ6mo4elQFqbRU7cABKClRr8izzz8P3uecejsDBvjWv3/w2IbmLm9KS33R2bRJy0OH9Fp8vG5pMGGCLzyjRunQrdFiaLEC45yLBT4EpgLFwCZgjojsiGgzAOgMfBfIqyUwp0UkqZ7n/hfwGxFZ5Zx7GtgmIv9xoXcxgWkBnDkTHI775BMdVvFs/35/Yy/Qb739+mnurcGD1SKPbe3G5YeI/p49wfFEx9vioH17HU7zvJwJE2DIEMu91oy0ZIG5CvihiNwQPn8UQEQer6ftc8BrXyQwTvPWHwb6iEhl7c84HyYwlwGVler1eIKzd6/uMOmV3jdfjx49YOjQ+s02+rp8qK7W368nOJs26fyOF6jSpYvv4UycqJaa2rzv3IZoyQstU4H9EefFQHYj7m/nnNsMVAJPiMhvge7AcRHxBv2Lw59TB+fcAmABQHp6eiNf3Yg6cXF+qvtrr617/dQp+Phj/WP00Uewe7faW2/BL38ZbNunj040DxsGw4f7xwMG6Bomo+UQE+N/MbjjDq2rrNTca5Gi8y//4s/1paSo0HiiM3685nAzmp1oCkx9KwMb4z6li8gB59wg4C3nXCFwsqHPFJFngGdAPZhGfK7REunUqf6dJUHDuPfs8UXnww91m+OXXw7O/SQk6B+y4cPVRoxQGz7cNvxqScTF+b/rcCZyzp3TzNKbNsHGjWq/+51/z9ChvoczcaLmXWvXrnnevw0TTYEpBvpFnKcBBxp6s4gcCJd7nXNvA1cCrwDJzrm4sBfTqGcarZQOHc4vPkeOqNh49pe/aHaG3/42OOfTv78vOCNH6oTzyJG2pqOl0K4dTJqk5nH8uD+fs2GDerMvvKDX4uP138PEiZCdreWwYTaf08REcw4mDp3k/ypQgk7y3yEi2+tp+xwRczDOua5AmYiUO+d6AO8Dt4jIDufcr4FXIib5C0Tk/13oXWwOxqhDebl6PTt3Bm3XruBC1bQ0X3A8GznSshK3VEpKfA9n40YVn1On9FrnzsG5nOxsHW4zzkuLneQHcM79NRqGHAusEJGlzrklaPqBPOfcBOBVoCtwDjgoIqOcc18BcoFqIAZ4UkSeDT9zEH6Y8lbgLhEpv9B7mMAYDaa6WoMMtm9X27FDy507g8LTv7+KzejRvg0fbnuwtDSqq/VLw8aN6uVs3KgbunnzOWlpvoeTna0ZCZLqBK+2WVq0wLQUTGCML01VlYZWFxWp4BQVqe3cqUlNQYdfhgzR9R2RNmiQBRe0JM6d00Sfnuhs2OCnv4mJ0S8L2dm+8Iwc2WZ/fyYwDcAExmgyQiEdavMEp7BQ7aOPdN0H6BzRqFEqNt5c0Zgxmu3AaBkcPuwPq3mezrFjei0pSSPVJk1S0Zk0SSMV2wAmMA3ABMaIOmfO6PBaYSEUFPjCc/iw36ZvX02ZEik6w4bpBLXRvIhoROKGDbB+vZaRQ2vp6UHBycxslVFrJjANwATGaDEcPOiLjmc7dmgWbdBQ6pEjVXgizbyd5ufsWR1a8wRnwwYdNgX9UjBunC84kybp0Ohlvo+TCUwDMIExWjShkE5Eb9umgrNtm9rBg36b1FQVmnHjfBs82MJum5uDB33BWb9eo9a8rOQ9evhiM2mSzudcZlkmTGAagAmMcVny2We+2Hi2c6e/fqdjRx1WixSd0aNt0Whz4mUhWL/et5079Zpz+vuZNAmuukrLFr42xwSmAZjAGK2Gc+f0D1h+vm/btulWC6B/rIYN06SR48b5ZY8ezfvebZnjx30Px7Pjx/VacrIOq111lVp2dota3GsC0wBMYIxWjYiu3dm6VcVm61YVnv0RqQDT0nyxyczU4/T0y36O4LKkulrTGb3/vtr69RqBKKK/j5EjfcG56qpm9XJMYBqACYzRJjlyJCg4W7dqqpzqar3erZvv5Xiic8UVbXbNR7Ny8qSGRkeKjhcmnZwcFJzs7KjN5ZjANAATGMMIU1amUWwffKCCs3WrnpeHk2F06KDBBJ7gZGbqGh7b/C26iAS9nPfe0wW+Iv5i0Kuugq98RW3w4CbxRk1gGoAJjGFcgFBIPRtPdD74QD0eL4dXfLz+QcvM9G3MGAsmiDYnTuhcznvv+V6ON/fWs6cvNl/5ii4MvQTrckxgGoAJjGE0Em8jsEjR+eAD3R4bdBhtxIig6Iwbd9mF4V7WVFVpwIfn4fz5z5pVAvRLQVaWis3f/I3OwV0EJjANwATGMC4B3pbHnth4Vlqq153TOZysLDVvmK0FRUW1eg4d8gXnvfd0Xc6ePS1PYJxzDwIviMixi3qzFoQJjGE0IaWlQcHZsiUYwTZkiC86nvAkJzff+7YlKiq+1PxZU26Z3AfY5Jz7AFgBvCFt0f0xDOPCpKTATTepeRw6pENrW7aorV8PL73kXx88uK7o2LbHl54oB2c0aojMOeeA64FvAOOB/wKeFZGPmub1mgbzYAyjBXD0qC84nu3b518fNEgnp7OytDRPp9lpSg8GERHn3EHgIFCJbgz2snPuTRH5XuNe1TCMNk337nD99WoeR4/qsNrmzSo4GzfCf/2Xf90bXhs/3hcd2020xdKYOZj/D5gLHAGWA78VkZBzLgbYLSKDm+41Ly3mwRjGZUSkp+MJj5e1GDSQwBOcrCwNJLDotSahKT2YHsAMEfkkslJEqp1zOY14jmEYRsOpz9M5csQXnM2b4Z134MUX9Zpzul21JzoTJuhiUVunE3UaIzCJtcXFOfcTEXlERHY25AHOuWnAU0AssFxEnqh1fTLwJDAGuF1EXg7XjwP+A+gMVAFLReSl8LXngGuBE+HH3Csi+Y3ol2EYlxs9esANN6h5HDwYFJ0//hGef16vxcZqBgJPcMaP18WhlpGgSWnMENkHIpJZq65ARMY08P5Y4ENgKlAMbALmiMiOiDYDUBH5LpAXITBXoFNAu51zfYEtwAgROR4WmNe8tg3BhsgMow0gAgcO+IKzebOuA/EWhyYkqMhMmOCLzsiRlnvtAlzyITLn3LeAbwODnHMFEZc6AX9uxLtNBPaIyN7wc1cBtwA1AiMi+8LXqiNvFJEPI44POOcOAT2B4434fMMw2hLO6cZsqalwyy1a52Wa3rJFxWbTJnjhBfiP/9DrHTpo4IDn6UyYoIEFlmX6omjIENmLwGrgceD7EfWnROTzRnxWKhCx2opiILsR9wPgnJsIJACRodFLnXOPAeuA74tIeT33LQAWAKSnpzf2Yw3DaA04BwMHqs2cqXXV1bB7ty84mzbB00/Dk0/q9eTkoOBMmKCiZaLzhXyhwIjICXR+Y86X/Kz6fhuNWqjpnEsBngfmiojn5TyKhk0nAM8AjwBL6nyQyDPh64wfP94WiBqGoXibsg0bBnfdpXWVlZqtOFJ0/vmftR6gTx/d8njCBC3Hj9ftDowADRki+5OIXO2cO0VQEBw6L9LQIPRioF/EeRpwoKEv6pzrDPwB+IGIrPfqRSSc+Ihy59wv0PkbwzCMiycuTiPPxo6Fb35T686e1f10IkUnL8+/Z/DgoOhceWWbj1xriAdzdbj8soHlm4ChzrmBQAlwO3BHQ250ziUArwK/FJFf17qWIiKl4SwDXweKvuR7GoZh1KV9e5g0Sc3jxAl/QeimTfDuu7BypV6LjYWMjKDojByp4tVGaEwU2d8A/yUiJRf9Yc79NRqGHAusEJGlzrklwGYRyXPOTUCFpCtwDjgoIqOcc3cBvwC2RzzuXhHJd869hU74OyAfuF9ETl/oPSyKzDCMJqO0VMXGE52NG+F4OB6pQwddDDpxom/9+1828zlNmU15ETAL+BxYBbwsIp9d1Fs2MyYwhmFEDRFNke+JzYYNmvjT2zW0Z8+g4Eyc2GLnc5p8Pxjn3BhgNnArUCwiX2vcKzY/JjCGYTQroZBuTe0JzsaNsHOnihFoaHR2topNdrZu3paY2LzvTBMnuwxzCI3aOgr0uoj7DcMw2jbx8f7On/ffr3UnT+piUE903npL1+h47ceN8wUnOxuGDm3xQ2uNGSL7Fuq59AReBl6KXIV/OWEejGEYlwXFxb7gbNigAnTmjF7r2tUXnEmT9Lh79yZ9nab0YPoDD1ueL8MwjCiRlqY2Y4aeV1XBjh2+4GzYAD/+sS4WBX9obdIkLceObdZ8a42eg2kNmAdjGEar4dQpDZX2BGf9eo1kA523ycwMis6XiFq75JP8l3ChZYvBBMYwjFaLiA6trV/vC86WLXDunF7fskVF5yK45ENkl3ChpWEYhtHUOAf9+qnddpvWhUJQUKCCk5ERtVeJaWhD59xPGlJnGIZhtDDi43WB57e/rcdRosECg+7jUpsbL9WLtDbmzZtHr169GD16dKD+3/7t3xg1ahSjR49mzpw5nDt3jl27djFu3Lga69y5M0+GM7meO3eOiRMnMnbsWEaNGsWiRYtqnpWbm8v94RDHUCjE3WcQ4SAAACAASURBVHffzdy5cwmFQtHrqGEYxnn4QoFxzn3LOVcIDHfOFUTYx0Bh07/i5cm9997LmjVrAnUlJSX89Kc/ZfPmzRQVFVFVVcWqVasYNmwY+fn55Ofns2XLFjp06MD06dMBSExM5K233mLbtm3k5+ezZs0a1q/XXJ8FBQWMGTOGkydPcuONN5Kens5//ud/Eh/FbyiGYRjnI5r7wbQpJk+ezL59++rUV1ZWcvbsWeLj4ykrK6Nv376B6+vWrWPw4MH0798fAOccSUlJgHopoVAIF44AKSws5JprrmHKlCksXLiQhQsXNm2nDMMwGsEXejAiciK802QFcEJEPhGRTwBxzq1o6hdsTaSmpvLd736X9PR0UlJS6NKlC9dff32gzapVq5gzJ7j1TlVVFePGjaNXr15MnTqV7Gzdp62wsJCHHnqIxYsXm7gYhtHiaMwczBgRqdmiWESOAVde+ldqvRw7dozf/e53fPzxxxw4cIAzZ87wq1/9quZ6RUUFeXl53OZFfoSJjY0lPz+f4uJiNm7cSFFREfv37ycpKYmMjAxKvZh3wzCMFkRjBCbGOdfVO3HOdePicpm1WdauXcvAgQPp2bMn8fHxzJgxg/fee6/m+urVq8nMzKR379713p+cnMyUKVNYs2YNBQUFjB07lhdeeIGlS5eydevWaHXDMAyjQTRGYP4VeN859yPn3I+A94B/bprXap2kp6ezfv16ysrKEBHWrVvHiBEjaq6vXLmyzvDY4cOHOR7eS+Ls2bOsXbuW4cOHU1hYSEZGBikpKSxfvpzZs2dz4sSJqPbHMAzjQjRYYETkl8AM4LOwzQjXGfUwZ84crrrqKnbt2kVaWhrPPvss2dnZzJw5k8zMTDIyMqiurmbBggUAlJWV8eabbzLDyzkUprS0lOuuu44xY8YwYcIEpk6dSk5OTo3AAEydOpVZs2Yxb968qPfTMAzjfDQmm/Jj9dWLyJJL+kZRwFLFGIZhNJ6mzKZ8JuK4HZAD7GzE/YZhGEYbojFDZP8aYUuBKUBqYz7MOTfNObfLObfHOff9eq5Pds594JyrdM7NrHVtrnNud9jmRtRnOecKw8/8qXMtfAcewzCMNkJjJvlr0wEY1NDGzrlY4OdoepmRwBzn3MhazT4F7kUXd0be2w1YBGQDE4FFERFt/wEsAIaGbVpjO2IYhmFceho8RBZOF+NN2MSiO1s2Zv5lIrBHRPaGn7cKuAWo2RUzvKAT51x1rXtvAN70Mgc4594Epjnn3gY6i8j74fpfAl9HMw8YhmEYzUhj5mByIo4rgc9EpLIR96cC+yPOi1GP5GLvTQ1bcT31dXDOLUA9HdLT0xv4sbW44w7dJzsuDmJjtfTMO4+NhZgYtfqOY2OD5t1T+3nx8XXL+HjdnS4hQTcS8o6988REaNfOt/btg+cdOmhbG0U0DCMaiEhUDLgNWB5xfjfw7+dp+xwwM+L874EfRJz/E/B3wARgbUT9NcDvv+hdsrKy5KL42c9kUdbvRXf0Udt8/aOy+avfC9QtGvy8yNSpkpJwuKYus+NfRK66Sub3fDXQtmTotZLXd2GgLrfT34l07x6oyyFPBCSHvEC9gOQyP1CXR46UkBKom0+uCEgmm2vqUmIPimRkyKLUZcE+/e0LsvmJPwb7tEh/BCkpfl1mptbNny/BPpWI5OUF63JztW2gTzlal5MTrBfR9oE+5elzA32ar20zM/26lBStW7Qo2HbzZjXrk/WpLffJ+9yLBdgs0vC/+w3Z0fJvv0Cg/m9DhMw5dxXwQxG5IXz+aPj+x+tp+xzwmoi8HD6fA0wRkYXh81zg7bD9t4gMr6/d+bhsw5QrK6GiImjl5f7xuXP129mzvp05A2VlWkYenz4Nn30GJSX6zNp066YeUn1eV2ysekjdu0OPHn5Z23r31msxX2bqzzCM5qIpwpS9nSyHoR5DXvj8ZuCdRrzbJmCoc24gUALcDtzRwHvfAP5PxMT+9cCjIvK5c+6Uc24SsAG4B/j3RrzT5YU3fNahQ9N9hgh8/rkKzYEDWpaUqPiEQipyVVV1y7Nn4ehR2LULjhzRfcLrIzYWevZUsYm0vn2DlpLStP00DKPJaciWyYsBnHN/BDJF5FT4/IfArxv6QSJS6Zx7EBWLWGCFiGx3zi1B3a4859wE4FWgK3Czc26xiIwKC8mPUJECWCL+VgHfQofU2qOT+zbB/2VwTr2M7t1hzJiLf055uQrO0aMqOIcOqUjVtp07tayoqPuM5GRfcNLS/G1gI61z54t/R8MwmpTGrOT/CzBWRMrD54nANm946nLish0ia62IwPHj6jHVNs+DKi6G0lJtG0nnzpCeDv37w4ABWkYe9+plQQ2GcYloypX8zwMbnXOvhs+/DvxnY17OMOrFOejaVW3UqPO3C4VUdPbvr2uffAJ//rMKVSTt26vQDBpU1wYOhPBmboZhXHoaLDAistQ5txqN1BLgGyJiOeKN6BEf73so5+PECRWbTz6Bffu0/PhjtT/9CU6eDLbv2RMGD4YhQ/zSs+7dzfsxjC9BY/dzqQKqUYGpvRjSMJqfLl107qi++SMROHYM9u4N2kcfwbvvwgsvBIfgOnf2xeaKK9SGDtWyW7fo9ckwLlMas5L/O8B84BXAAb9yzj0jIq03astoXTinwtCtG4yvZxi5vFw9nY8+gj171Hbvhi1b4JVXNFrOo1u3oOAMHw7Dhul5u3bR65NhtGAaM8lfAFwlImfC5x2B90XkS4QaNQ82yW80mooKFZ8PP1TRiSyLI5JJOKdDeMOG+TZ8OIwYAX362JCbcVnTlJP8Dh0i86gK1xlG6ychwReM2pw5o0Kza1fQ/vQnvebRubOKjWcjRmg5eLDOLxlGK6MxAvMLYEOtKLJnL/0rGcZlRseOcOWVapGIaNTbX/7i286dsG4d/DJiM9i4OB1aGzECRo7UcsQIFTNbbGpcxjRoiCy8x0oamkH5atRzeedyjSKzITKj2Tl1Sr2cnTvVduzQ8qOP/Lke53Q9z8iRaqNG+QJk4dVGM9AkQ2QiIs6534pIFvDBRb+dYRhKp04aaFA72KC8XOd2IoVnxw54881gtoP09KDweOLTqROG0VJozBDZeufcBBHZ9MVNDcO4KBITYfRotUgqKzWk2hOcHTtg+3Z4+21NaOqRnu4LTqTwdOwY1W4YBjQuimwHmvByH3AGHSYTiyIzjGakqkqj27ZvD9pf/hLMij1woIrWqFF+OXy4hVQbjaIpo8huvIj3MQyjKYmN9ReD3nKLX19VpfM5nuAUFWm5erV6Q6DbJgwd6ntMo0dDRoZGtcU1dg22YdTlC/8VOefaAfcDQ4BC4Flp3E6WhmFEm9hYP/vA9Ol+fSikczxFRb4VFMBvfuNnMUhM1ECC2sLTr5+t4zEaRUM2HHsJCAHvol7MJyLynSi8W5NhQ2SGUYuzZzWoIFJ4CguDi0g7dw4Kjld27958721ElcYOkTVEYApFJCN8HAdsFJHML/eazYsJjGE0kOPHg4LjWWTW6pQUFZpIGznS5ndaIU0xBxPyDsKbhl3UixmGcRmSnAxXX63m4S0gLSwMCs/PfuYHFnjzOxkZmnjUE56BA23L7DZEQwRmrHPOy3HugPbhcy+KzLYUNIy2hHOQmqo2bZpfX1mpCUIjPZ2tWzVRqDdS0rGjRrB5ouOVNszWKmlwmHJrwobIDCOKnDmjEWwFBb7wFBTodtoeffsGBWfMGA2jTkxsvvc26tCUYcpfGufcNOApIBZYLiJP1LqeCPwSyAKOArNFZJ9z7k7g7yOajgEyRSTfOfc2kAKcDV+7XkQONW1PDMNoMB07wsSJah4icPCgLzZe+dRTfsaCuDjNx+bt7+NZaqpFs10mRM2Dcc7FAh8CU4FiYBMwR0R2RLT5NjBGRO53zt0OTBeR2bWekwH8TkQGhc/fBr4rIg12ScyDMYwWSmWlZqaOFJ2CAvj0U79N166+2HjezujRlq0gCrRkD2YisEdE9gI451YBtwA7ItrcAvwwfPwy8DPnnJOgCs4BVjb96xqGEXXi4vwca7ff7td70Wye4GzbBr/4BZw+rded0wWitb0dCypoVqIpMKnA/ojzYiD7fG3CEWsngO7AkYg2s1EhiuQXzrkqdLfNH0s9bplzbgGwACA9Pf1LdMMwjKhTXzRbdTXs21fX23n11WBQgeflRFqXLs3SjbZGowXGOTcVmAX8PDwHskBEnmnIrfXU1RaCC7ZxzmUDZSJSFHH9ThEpcc51QgXmbnQeJ/gQfcdnQIfIGvC+hmG0ZGJiYNAgta9/3a8vK/PDpz3R+fWv4ZmIP1P9+wcFZ+xYTbcTGxv9frRiLsaD+TbwDeAHzrluwLgG3lcM9Is4TwMOnKdNcXhRZxfg84jrt1NreExESsLlKefci+hQXB2BMQyjjdChQ/1BBSUl/vCaJz6vv+7vv9Ounc7leILjiU+3bs3Tj1bAxQjMYRE5DnzXOfcEMKGB920ChjrnBgIlqFjcUatNHjAXeB+YCbzlDXc552KA24DJXuOwCCWLyBHnXDyQA6y9iD4ZhtGacQ7S0tT++q/9+nPnNEVO5NxOXh6sWOG3SUurKzpXXGEJQRtAQ5JdXgHsjpjX+IN3TUS+75x7qCEfFJ5TeRB4Aw1TXiEi251zS4DNIpKHbsH8vHNuD+q5RMzyMRko9oIEwiQCb4TFJRYVl2UNeZ+mZt68ebz22mv06tWLoiId0du1axezZ/tBcXv37mXJkiXceOON9dY//PDDnDt3jsmTJ1NeXk5lZSUzZ85k8eLFAOTm5rJ161aefvppQqEQ8+bNIyYmhuXLlxNve7wbxhfTrl3d7a69EOpI0SkogD/+0c9EnZioC0Y90fFKWzAaoCG5yIrQYasP0WzKBV4pIoeb/A2bgGiEKb/zzjskJSVxzz331AhMJFVVVaSmprJhwwb69+9/3noR4cyZMyQlJREKhbj66qt56qmnmDRpEg888ACjRo3irrvuYsaMGWRnZ7N06dIm7ZdhtFkqKtTb8QTHE59DEcvuUlN9wfFEpxV5O5c8TFlERocXQI4BXkc3G7sZGOWcQ0T6XPTbtmImT57Mvn37znt93bp1DB48OCAu9dU750gK778eCoUIhUJ4+eAKCwu55pprmDJlCgsXLmThwoVN0xnDMCAhwReOSD77zBedbdvU3nyzfm8n0uNpA3M7DZJVESkHNjnnTotIzZCYc65rk71ZK2fVqlXMmTOnQfVVVVVkZWWxZ88eHnjgAbKzNbq7sLCQhx56iBUrVnDzzTdH5b0Nw6hF795w/fVqHp63Eyk6r72ma3c8Iud2POEZOrTVeDvQ+En+wHiaiBy7hO/SZqioqCAvL4/HH3+8QfWxsbHk5+dz/Phxpk+fTlFREV26dCEpKYmhQ4dSWloazdc3DOOLiPR27r7brz94sK63Ezm3UzuSzROerpfnd/mGTPL/DNgKfED961SMRrJ69WoyMzPp3bt3g+o9kpOTmTJlCmvWrGHEiBGMHTuWZcuWMWnSJCZMmMCVkROVhmG0PPr0UbvhBr+uvLyut1M7kq1fP19wPNG5DNbtNMSDKQCuBO4BOjnndgDb0RQvO0TkpSZ8v1bJypUr6x0eq6/+8OHDxMfHk5yczNmzZ1m7di2PPPIIhYWFZGRkkJKSwvLly5k9ezabNm2ii61QNozLi8REGDdOzcOLZKvt7axe7a/b6dBBvZ3akWwt6G9Ao5NdOufS0An/DGC0iNz9Bbe0OKIRRTZnzhzefvttjhw5Qu/evVm8eDH33XcfZWVl9OvXj7179wbE4Hz1BQUFzJ07l6qqKqqrq5k1axaPPfYYd955JzfddBN33KFLiX7wgx+wc+dOXnnllSbtl2EYzUh5OezY4QuOJz6RWx8MGFA3oGDQoEuSk+2Sb5ncGrFsyoZhtBq8HUZri86uXZqvDSApSXOyjR0Ljz4KF5mP0QSmAZjAGIbR6jl7Vjd6qy08RUW6XuciaMnp+g3DMIxo0b49jB+v5hFlh8IExjAMo60Q5Z1AbScewzAMo0kwD6YxFBTA55/rt4ALWUxM3ePI8ossNlYt8jg2VhdvWRJLwzAuF0SkzVlWVpZcFDfeKItYJDqQqbaZTNlMZqBuEYtEQFIoqanLZLMIyHxyA21LSJE8cgJ1ucwXgUBdDnkiIDnutUC9ZGdL7vD/G6jLy/6xlHz17kDd/D55Il/9qmR22V1Tl9LxuMg//qMs+uq7wT798Pey+cerg326a4/In/4kKT0q/D6NrRSprJT58yXYpxKRvLxgXW6u/ggDfcrRupycYL2Itg/0KU+fG+jTfG2bmenXpaRo3aJFwbabN6sF+rRI26ak+HWZmVpnfbI+tcY+eZ97saCZ72moWRRZYygo0Hjz4O+vfquurnscWdZnVVXBY+/cO66o0D3IT5+GU6fqlhUVmscoLk49ntplRQWcOaPtz5zxj7/sv4F27TQMsnPnC1vXrvVbcrJ5ZoZxGWBRZE3JmDHN/QaXHhHddOnMGRWgykoIhdS848pKX5wihSny/NQptZMn4cQJ3T1w5049P3lSF4hdiE6doEcP3U+jR4/gcffu0KuXJhX0ys6doz5haRhG4zCBaes4p+GM7ds37eecOwfHj8OxY0Hz6o4eVTtyRG3XLi1Pnar/eYmJKjae4PTpAykp9VtiYtP2zTCMejGBMaJDu3Z+or/GUFGhQnP4sO67ceiQX3rHBw/C1q167K1cjqRbN11YlpqqKdIjS++4a1fziAzjEmMCY7RsEhKgb1+1L6KqSoWotDRoBw7okF1JCeTnqxDVnnfq2FEz1qan1y09M0/IMBpFVAXGOTcNeAqIBZaLyBO1ricCvwSygKPAbBHZ55wbAOwEdoWbrheR+8P3ZAHPAe3RHTe/I20xcsHQQAbPS7rQ1gWhkApPSQkUF6vt3w+ffqplQYF6RbXp0wf699dkgv37+8eedejQNP0yjMuUqAmMcy4W+DkwFShGd8jME5EdEc3uA46JyBDn3O3AT4DZ4Wsficg46vIfwAJgPSow04DVTdQNozUQH+97JeejvFwF6NNP1T75BPbt03LLFnj1VR2+i6RXLxg4sK4NGqTekEXKGW2MaHowE4E9IrIXwDm3CrgF3VfG4xbgh+Hjl4GfOXf+gXHnXArQWUTeD5//Evg6JjDGlyUxUYVh0KD6r1dXq5ezb5/axx/75caN8PLL/i6FoN5Vero+b/Bg/9neeXJyFDplGNElmgKTCuyPOC8Gss/XRkQqnXMngO7hawOdc1uBk8APROTdcPviWs+sN02oc24B6umQfpGpqg2jhpgYf27oK1+pe72yUj2gjz+GvXuD9uqrOlcUSbduukPh4MFBGzJEh+YsAMG4DImmwNT3P6T2XMn52pQC6SJyNDzn8lvn3KgGPlMrRZ4BngFdaNngtzaMiyEuzp+nmTKl7vWTJ1V8PvooaO+/Dy+9FIyG69hRhSbShg7Vsm9fEx+jxRJNgSkG+kWcpwEHztOm2DkXB3QBPg9P2pcDiMgW59xHwBXh9mlf8MxmYd68ebz22mv06tWLoqKimvrjx4/zzW9+k6KiIpxzrFixgm7dujF79uyaNnv37mXJkiU8/PDDnDt3jsmTJ1NeXk5lZSUzZ85k8eLFAOTm5rJ161aefvppQqEQ8+bNIyYmhuXLlxNv4/0tm86d/V0Ha1NRoXM9H30Eu3druWeP7uORl6dBCh7t2/uCU9vM8zGamWgKzCZgqHNuIFAC3A7cUatNHjAXeB+YCbwlIuKc64kKTZVzbhAwFNgrIp8750455yYBG4B7gH+PUn8uyL333suDDz7IPffcE6j/zne+w7Rp03j55ZepqKigrKyM5ORk8vPzAaiqqiI1NZXp06cDkJiYyFtvvUVSUhKhUIirr76aG2+8kUmTJlFQUMCYMWM4efIkM2bMIDs7m6VLl0a9r8YlJiHBF4lp04LXqqo06GDPHhUfr9y+HX7/+6D4dOzoP+eKK9S84+7dMYymJmoCE55TeRB4Aw1TXiEi251zS9AEannAs8Dzzrk9wOeoCAFMBpY45yqBKuB+Efk8fO1b+GHKq2khE/yTJ09m3759gbqTJ0/yzjvv8NxzzwGQkJBAQkJCoM26desYPHgw/fv3B8A5R1JSEgChUIhQKIQX91BYWMg111zDlClTWLhwIQsXLmzaThnNT2ysH502dWrwWmVlUHw827oVfvMbFSePrl190Ym0IUM0r5xhXAIs2WUTsm/fPnJycmqGyPLz81mwYAEjR45k27ZtZGVl8dRTT9GxY8eae+bNm0dmZiYPPvhgTV1VVRVZWVns2bOHBx54gJ/85CcAdO3albi4OFasWMHNN9/c5P0xLmNCIZ3z+fBDFZ0PP/SP9+8Ptu3bNyg6w4ZpOXCghVq3cSzZZQumsrKSDz74gH//938nOzub73znOzzxxBP86Ec/AqCiooK8vDwef/zxwH2xsbHk5+dz/Phxpk+fTlFREV26dCEpKYmhQ4dSWlraHN0xLifi433BqE1ZmXo9nuh49vLLuv+RR1ychlXXFp5hw2y+x6gXE5gokpaWRlpaGtnZGp09c+ZMnnjCT2awevVqMjMz6d27d733JycnM2XKFNasWcOIESMYO3Ysy5YtY9KkSUyYMIErL7R63TDOR4cOmim8vmzhR48GRWfXLi3XrtUEph6dOgWFxxOfK66wIbc2jAlMFOnTpw/9+vVj165dDBs2jHXr1jFy5Mia6ytXrmTOnDmBew4fPkx8fDzJycmcPXuWtWvX8sgjj1BYWEhGRgYpKSksX76c2bNns2nTJrp06RLtbhmtme7d4aqr1CKprtahtUjR2bUL3nsPVq0K5npLTa0rPMOGaXqd2NiodseILjYH00TMmTOHt99+myNHjtC7d28WL17MfffdR35+Pt/85jepqKhg0KBB/OIXv6Br166UlZXRr18/9u7dGxCJgoIC5s6dS1VVFdXV1cyaNYvHHnuMO++8k5tuuok77tBAvB/84Afs3LmTV155pUn7ZRhfyNmz/pDbrl1BO37cb5eQoEEFkeLjmUW5tUgaOwdjAmMYRnQQ8ff6ifR6du3StT6RIdbdu9cvPIMHW1brZsQm+Q3DaJk4Bz17ql19dfBaZaXmcqvt8axZA+GwfkBT9AwYUFd4hg3TzeUs0KBFYQJjGEbzExfnp8G56abgtZMn6x9ue/ttHY7z8AINas/1XHGFLjo1oo4JjGEYLZvOnWH8eLVIqqs1oWik6Hz4oQYarFxZN9Ag0tvxxKd/fws0aEJMYBrDoUM6ThwXpxYf7x/Hxan77lFd7VtVlX8M2s4537zzmBj7x24YDSUmRvfZ6dcPvva14DUv0KC2+KxcWX+gQW3hsUCDS4IJTGP4xjfg9dfPf90TmPr2hW8oCQnqztdnCQmaCLG83LfIcxFtk5CgE6HesWeeEMbG1l926KBrFuqzjh2DAlpf39u312dEWkKCjYsb0ad9e8jIUItERLdKiAwy+PBD2LkTXnstGGjQrVvdobZhw1SQ2rWLbn8uV0SkzVlWVpZcFG+8IYtyNov+K1Xb/NBzsvlbywN1iya/JfLDH0pKp5M1dZmppSL//M8yPzs/0Lbk+z+VvLteCtTlTnlR5BvfCNTldHlHZOxYyUl+J1Av06dL7vhnAnV5V/0fKZk6N1A3v8dvRMaNk8x222vqUmIPivTvL4s6/WuwT2TKZjKDfWKRCEgKJX6f2CwCMp/cYJ9IkTxygn3q9HcigwYF+9Rnk8g990hO/4Jgn55/XnK/Hfw55b14Skr2VwX7NF9/LZmZfl1KitYtWiTBPm1WC/RpkbZNSfHrMjO1bv78YNuSEpG8vGBdbq62DfQpR+tycoL1Ito+0Kc8fa71qQX1afduyX1wW7BP3eZKCSnBPiW9IHL99ZLZ8xO/T71CIpWVLa9PEb8n73MvFjRvJA01C1M2gojo8MLp00E7c0avnY+qKr2vrEwt8riszH9G7eeePg2nTulEbuQOkPXhHHTpookau3bVXSC7dtVvmt27q/XoESy7d9c2F/K+DOOLOHXKz+FW2/s5dcpvl5gYzF4daT16XPbevIUpG18O5/zhrV69ove5Ipp65ORJOHGibnn8uObFOnYsaAcOaHn06PkFKiZG/3P36qUhsr161T3u00etd2/tu2FE0qkTZGaqRSICn31WV3h27Ki7fUJycl3R8bZT6NQpuv2JEubBGK0DERWjo0fVjhzxjw8fVjt0yC8PHVLhqo/OnVVoPNFJSVHr29cv+/bVPxiX+TdSowmprNSN42onEd21q24G65SUunv2DB3a4haW2kr+BmACYwAaGHHkiH4D/ewzOHhQLfL44EEoLVXxqk1ioi82qamQlqZlpPXt26L+QBgthLIyzV4QuW2CJz5HjvjtnNNQ6kjR8WzAgKhvn2AC0wBMYIxGc+aMCs2BA34ZacXFuiYjcuGfR69eGkqbllZ/mZqq0XaGAToc7AmOt2mcJ0SRX3Ti4nSPnvq2y05Pb5IlDyYwDSAaAjNv3jxee+01evXqVbPhGMCAAQPo1KkTsbGxxMXFsXnzZnbt2sXs2bNr2uzdu5clS5bw8MMPc+7cOSZPnkx5eTmVlZXMnDmTxYsXA5Cbm8vWrVt5+umnCYVCzJs3j5iYGJYvX068bQwVfUT0j0NJiW/Fxb7t369l5DoM0G+pffroH4V+/bSsfdyzpw3HtXVEdIg3crfSSBEqK/PbJiTo3j1DhgSFZ8gQ/Xd1keJjAtMAoiEw77zzDklJSdxzzz11BGbz5s306NGj3vuqqqpITU1lw4YN9O/fHxHhzJkzJCUlEQqFuPrqq3nqqaeYNGkSDzzwAKNGjeKuu+5ixowZZGdns3Tp0ibtl3EJOHVKxWf/ft8+/dQvP/20rifUvr0vNunpOmzilf37qzdkXyraLiLqWUeKqOlEwAAAEzZJREFUj7d19p49wX9P27bVv/dPA2jRUWTOuWnAU0AssFxEnqh1PRH4JZAFHAVmi8g+59xU4AkgAagA/l5E3grf8zaQAng/wetF5FAUunNBJk+ezL59+xp937p16xg8eDD9+/cHwDlHUnjDplAoRCgUwoW/yRYWFnLNNdcwZcoUFi5cyMKFCy/Z+xtNSKdOMHy4Wn2IaMScJzaffqqTxV75hz/o3FAkMTE61OYJzoABfjlggIqRzQW1Xpzz5wOvvTZ4rbpah3E9wRkyJGqvFTWBcc7FAj8HpgLFwCbnXJ6I7Ihodh9wTESGOOduB34CzAaOADeLyAHn3GjgDSA14r47ReSymFRxznH99dfjnGPhwoUsWLAgcH3VqlV1Nh2rqqoiKyuLPXv28MADD9TsiFlYWMhDDz3EihUruPnmm6PWB6OJcc5fw3O+XUrPnVOP55NPgrZvH/zpT7rpV1VV8J6UFF9wIsXHO7fV6a2TmBj1cNPSYMqUqH50ND2YicAeEdkL4JxbBdwCRArMLcAPw8cvAz9zzjkR2RrRZjvQzjmXKCLlTf/al5Y///nP9O3bl0OHDjF16lSGDx/O5MmTAaioqCAvL4/HH388cE9sbCz5+fkcP36c6dOnU1RURJcuXUhKSmLo0KGUlpY2R1eM5qRdO39cvT4qK3UYzhMdr9y3DzZsgF//uu66oT59gqIzYIBOInsekAmQ0UiiKTCpQGTwdzGQfb42IlLpnDsBdEc9GI9bga21xOUXzrkq4BXgx9KCJ5b69u0LQK9evZg+fTobN26sEZjVq1eTmZlJ79696703OTmZKVOmsGbNGkaMGMHYsWNZtmwZkyZNYsKECVx5vm+7RtsjLs4fLgv/+wpQVaXDJpHC49mmTfDyy3UFqG/f+sVn4ECdOLZIOKMW0RSY+kJgagvBBds450ahw2bXR1y/U0RKnHOdUIG5G53HCT7YuQXAAoD09PTGvfkl4syZM1RXV9OpUyfOnDnDH//4Rx577LGa6ytXrqwzPHb48GHi4+NJTk7m7NmzrF27lkceeYTCwkIyMjJISUlh+fLlzJ49m02bNgW2WzaM8xIb62cirr35F/gC5InOxx/7x++/Dy+9FByCc07ngCJFJ1KI0tJU9Iw2RTR/48VAv4jzNODAedoUO+figC7A5wDOuTTgVeAeEfnIu0FESsLlKefci+hQXB2BEZFngGdAo8guUZ/Oy5w5c3j77bc5cuQIaWlpLF68mOuuu47p06cDUFlZyR133MG0adMAKCsr48033yQ3NzfwnNLSUubOnUtVVRXV1dXMmjWLnJwcVq5cyU3hjZmmTp3KrFmzmDdvHq+88kpTd81oC0QK0DXX1L1eWakh15GejydCb78Nv/pVMHed97z6xGfAAPWObKuKVkfUwpTDgvEh8FWgBNgE3CEi2yPaPABkiMj94Un+GSIyyzmXDPwPsEREXqn1zGQROeKciwdWAmtF5OkLvYsttDSMJqaiQgXIE53a5YFa3y3j43Wep/bQmydEffpYwtIWQIsNUw7PqTyIRoDFAitEZLtzbgmaAjoPeBZ43jm3B/Vcbg/f/iAwBPgn59w/heuuB84Ab4TFJRZYCyyLVp8MwzgP3kK/QYPqv37unIZd1yc+v/+9puup/bzakW+RZgLUIrGFloZhtDzKyuoPQPDsUK2lbgkJvgdUOxS7f38bgrtEtFgPxjAMo8F06AAjRqjVR6QA1Rai+jyguDh/DsgTnUhLS7MouKagMbuTtRa76B0tpQXuwCetcFdB65P16VL26c7/EXn00WCf0EY55AX79Fd/JbkTlwX79LNPpGT3mZbVJ9vRsuViQ2SG0cYpL6+bCcHzhj75RAMUaq8D6tbN93gi88F51qtXq58HsiEywzCMLyIxUXNynS8vV1WVJo/0BCcyH9zu3bB2rW73HUlCwvmzYXvH4byCbQUTGMMwjNrExvr5u/7qr+peF9EdUT3RqZ2YdN06DcWurg7el5zsC07knkCR560oJY8JjGEYRmNxTsUiORnGjq2/TSikXpAnPJHbMuzfD+vX65betenZ0xebyM3pIjeou0xEyATGMAyjKfAWj14oNVVZmb8ZnWfe+ccfw7vvwrFjde/r3t0XHW+77tpbdnfp0uyb1JnAGIZhNBcdOsAVV6idj9On/d1R9+8P7pRaUgIbN+pOl/U9u2/foOikpsIdd6iXFAVMYAzDMFoySUkwbJja+Sgv1zkfT3Q8O3BAy/ff1+PycrjpJhMYwzAMo4EkJmrutoEDz99GROd8unaN2muZwBiGYbQFnIMePaL6ka17VZBhGIbRbJjAGIbx/7d37sFTlWUc/3wHFQFvgFkmKKKWIhgiGloaI463MqR0wsmR0rTJHEuHmSSqIctGMnOyVPKCeL9gXtAJBTEvmaDiBfiJBHg3QkUy0bwgT3+8z8r5rWd/v91lz+6vfD4zZ/ac97znfb/n2d3z7Pues88TBIUQDiYIgiAohHAwQRAEQSGEgwmCIAgKIRxMEARBUAjhYIIgCIJCCAcTBEEQFEJTHYykQyUtkbRM0hk5+7tLusH3z5M0ILNvgpcvkXRItW0GQRAEraFpDkZSN+AC4DBgEHCMpEFl1U4AVpvZzsB5wGQ/dhAwFtgdOBS4UFK3KtsMgiAIWkAzRzD7AMvM7Bkzew+4HhhdVmc0cIWv3wSMkiQvv97M3jWzZ4Fl3l41bQZBEAQtoJmxyLYDXsxsvwR8vlIdM1sr6Q2gr5fPLTt2O1/vrE0AJJ0EnOSbayQtqeMcALYGXqvz2KIJbfUR2uojtNXH/7K2HWpprJkOJi/zjVVZp1J53gisvM1UaHYxcHFHAqtB0qNmNnxD2ymC0FYfoa0+Qlt9fJy0NXOK7CWgf2a7H/CPSnUkbQRsCbzewbHVtBkEQRC0gGY6mEeAXSTtKGkT0k37GWV1ZgDjfP0o4B4zMy8f60+Z7QjsAjxcZZtBEARBC2jaFJnfUzkFuAvoBkw1szZJZwKPmtkM4DLgKknLSCOXsX5sm6QbgaeAtcD3zewDgLw2Cz6VDZ5mK5DQVh+hrT5CW318bLQpDRCCIAiCoLHEP/mDIAiCQggHEwRBEBRCOJgyJJ0mqU3SIknXSdrUHyKYJ2mph7LZxOtWDG3TRG3TJD0r6QlfhnpdSTrftS2QNKxgbT9wXW2SfuhlfSTNdrvNltS7C2mbJOnljN0Oz9TPDUvUQD1TJb0iaVGmrGZbSRrn9ZdKGpfXV8HaRkp6I2PDn2WOaXgIpwrajvb3dZ2k4WX1mxZeqhZtkgZI+k/GblMy+/aStNC1nS8p7y8ajdB2jqSn/TN1i6StMvsaZzczi8UX0p83nwV6+PaNwLf8dayXTQG+5+snA1N8fSxwQwu0TQOOyql/ODCT9B+iEcC8ArUNBhYBPUkPjtxNetLv18AZXucMYHIX0jYJGJ9TfxDwJNAd2BFYDnRrsKYDgGHAokxZTbYC+gDP+GtvX+/dZG0jgTty2ujmdhsIbOL2HFSQtt2AzwL3AsM7ex+7iLYB2Xpl7TwM7Ovv90zgsIK0HQxs5OuTM+9pQ+0WI5iPshHQQ+l/OD2BFcCBpNA1kELZHOnrlULbNEtbR//5GQ1caYm5wFaSti1I127AXDN728zWAvcBY2hvn3K7tVpbJSqFJWoYZnY/6SnJ8n5rsdUhwGwze93MVgOzSXH6mqmtEoWEcMrTZmaLzSwvKkdTw0vVqC0Xf1+3MLOHLF3tr6RzW9erbZZ/HyBFSenn6w21WziYDGb2MvAb4AWSY3kDmA/8K/NmZMPUtAtt4/X7Nkubmc3y3Wf5UPc8Sd3LteXobjSLgAMk9ZXUk/Sruz/wSTNb4fpXANt0IW0Ap7jdppamfZqsLUuttmqmzkraAPaV9KSkmZJ270RzM+kKduuIHSU9Luk+Sft72Xaup0SztB1PGi2VNDTMbuFgMvhFZjRpaPhpoBcpUnM5pWe7qwl/U5g2SccCE4Bdgb1J0yU/arY2M1tMGmbPBu4kDZ/XdnBIV9B2EbATMJTksM9ttrYqqTV8UjN5DNjBzD4H/B641cu7graubLcVwPZmtidwOnCtpC1ogTZJE0nfh2tKRRU01KUtHEx7DgKeNbNXzex94GZgP9K0ROlPqdlwNJVC2zRNm5mt8OmTd4HLWT+d09QwOmZ2mZkNM7MDSDZYCqwsTX356ytdRZuZrTSzD8xsHXAJLbJbhlpt1UydudrM7N9mtsbX/wxsLGnrJmurRFewWy4+/bTK1+eT7m18xrX1y1QtVJs/GPIV4Js+JQcNtls4mPa8AIyQ1NPvpYwiRQ/4Cyl0DaRQNrf5eqXQNs3StjjzxRdpvrb0pMgM4Lj0EJJGkKbUVhSkDUnb+Ov2wNeA62hvn3K7tVRb2T2fMbS3W15YoqKp1VZ3AQdL6u2j24O9rGnaJH2qdM9R0j6k68kqukYIpy4bXkrSJ5RyWSFpoGt7xt/XNyWNcLsex/rPQaM1HEqa7fiqmb2d2dVYu23oEwr/bwvwc+Bp0gXnKtLTFAPdyMuA6UB3r7upby/z/QNboO0eYKGXXQ1s5nVFSsa23PcPL1jbAyRn/CQwysv6AnNIo5k5QJ8upO0q73uBf1G2zdSf6NqW0ICneHL0XEeaJnmf9MvwhHpsRZo7X+bLt1ug7RSgze06lzSiLrVzOPB31z2xQG1jfP1dYCVwV2fvY6u1AV/P2O0x4IhMO8P9u7wc+AMebaUAbctI91Se8GVKEXaLUDFBEARBIcQUWRAEQVAI4WCCIAiCQggHEwRBEBRCOJggCIKgEMLBBEEQBIUQDiYIgiAohHAwQRAEQSGEgwkKRVI/Sbcp5RJZLul3/k/gjo75W4XySZLGd3LsVpJO7qytWvBAmaXcHf9U+zwyHZ5L0ZSfb6PqNhJJJ2bstS6z/tuyeh/mScmUfVeeL0XSxpKuUsrB1CbpPQ9NE3RRwsEEheHhLm4GbjWzXUjxljYDzuroODPbbwO63YqUp6cRbZXaWGVmQ81sKCkf0HmlbUuhy1uC27cPmfPthHa2qbYPSRt0nTCzS9x2XwZezNju9Jzqy71uiT2ABR4Mcibwgpl9w8x2p/nxzYIaCQcTFMmBwDtmdjmAmX0AnAYcL+lLSqHyN5XUy3+RDgaQtKbUgKSJSln07iYlbyqV3yppvh93UqbPs4Gd/BfyOWVtna6U2XKR1me2HCBpsaRLvK1ZknrUcpKSjpX0sPf5R0ndvN2nJV3q/V0j6SBJD/pobp9M/09LusLtcZNSWoGO2l0s6UJSmJHLsudbg22mq32Gw/GSJpXZpNRH/zwttdjIGUwKd1MLQ0gBSu8FppvZxDr6DVpFI+LwxBJL3gKcSvq1X17+OOmX6S9JOW4uACZk9q/x171IF6SewBak+EnjfV8pHlYPUuymvr49gPaZ+8rb6kUaRbUBe3r9tcBQr3cjcGwH5zSJTCZMUkKz24GNfftCUpDCUrtDSD/k5gNTSbHFRpNGdSW9BnzBt6cC4ztpdx0wIu98q7VNjp3GA5My+7J95Gqp4/MwHji7g/1557IaeJVMvK7MvueArVv9OY+l8lIKQR8ERSDyc0aUys8kRWl9h+SMytkfuMU82qukbPTWUyWVMlP2J0V9XdWBli96W295Wzd7+zNIaRBK8/7zSRe6ahlFcl6PpBkrepDC2d/v7S70/tqAOWZmkhaW9fGimT3o61eTbPFOB+0+bym7ZSVqtU0e2T4qnWOtDCbl5fkQSbeb2RF5lSX1B9aQgmwWlfE0KJBwMEGRtJEix36Iz6X3J0Vk7UMaTWxMikz9Vk4bH3FQkkaS8uPsa2ZvS7rXj++IjlJZv5tZ/4B0Aa0WAVeY2YQyjQPK2l2X2V5H++9e+TmWEjxVajfPTqX9I6nONmtpP0VeXifbR66WOhgCnJfROoA0CqnEHqSIwycCcyU9YmaPb6CGoInEPZigSOYAPSUdB+Dz9ucC03xUcjHwU1I2vck5x98PjJHUQ9LmQOmX7pbAar+A7gqMyBzzJrB5hbaOVMqn04sUSv2BDT7DdI5HaX3OmT6Sdqixje0l7evrxwB/raHd8vOt1jYrgW2UnpDrTko8VYmKWiTNkdRp6lx/UGAXUrqJEsNI93gqMQRYaClPyneAGyRt2VlfQdchHExQGJYmyscAR0taSsol8Q7wY3c6a83sWtLN570lHVh2/GPADaR8FX9ivUO4E9hI0gLgF6RcJKVjVgEP+o31c8ramkbK2zMPuLQRv4bN7CngJ8As1zOb2qdzFgPj/Pg+wEXVtptzvlXZBvgVaYpyHnAH7S/8VZ2jO42dqS6L687AS5Yyr5bYizQlWYkh+EMBZjabdH9sahV9BV2EyAcTBC3Ep4nuMLPBLZZSM0pP/R1v+Y8bV3P8TOB50nTddF+v2haSniMlYHutnv6D4ol7MEEQ1IWZLQLqci5+/GHZbb+pv6WkJ6z9f2Eoq9cDeIh0725dvf0HxRMjmCAIgqAQ4h5MEARBUAjhYIIgCIJCCAcTBEEQFEI4mCAIgqAQwsEEQRAEhRAOJgiCICiEcDBBEARBIfwXHAaesP2yAEwAAAAASUVORK5CYII=\n",
 "text/plain": [
 "<Figure size 432x288 with 1 Axes>"
]
 },
 "metadata": {
 "needs_background": "light"
 },
 "output_type": "display_data"
 }
],
 "source": [
 "for ii in range(0, d_red.size-1):\n",
 " H_2 = np.array([])\n",
 " for i in range(0, T_ox.size): \n",
 " def objective_ox(d):\n",
 " return np.abs(((d[1]*d[0]**3+d[2]*d[0]**2+d[3]*d[0]+d[4])-(d[5]*d[0]**3+d[6]*d[0]**2+d[7]*d[0]+d[8])*T_ox[i]/1000)\\\n",
 " +(R*T_ox[i]*np.log((n_H2O[ii]-(d_red[ii]-d[0]))/((d_red[ii]-d[0])*10**linear((1/T_ox[i]), *coeff3)))))\n",
 " \n",
 " #Constraints will remain the same from reduction\n",
 " #Define new initial guesses and bounds\n",
 " ini_guess_ox = np.array([0.01, 1, 1, 1, 1, 1, 1, 1, 1])\n",
 " bounds_ox = ((0.0,d_red[ii]-0.0001), b, b, b, b, b, b, b, b)\n",
 " \n",
 " #Minimize function objective_ox\n",
 " sol_ox = minimize(objective_ox, ini_guess_ox, method='SLSQP', constraints=constraints_red, options={'disp': False}, bounds=bounds_ox)\n",
 " H_2 = np.append(H_2, d_red[ii]-sol_ox.x[0])\n",
 " \n",
 " #For every T_red plot H_2 productivity as a function of T_ox\n",
 " plt.plot(T_ox, H_2, 'r')\n",
 " plt.plot(T_ox, np.repeat(d_red[ii], 40), 'b--', linewidth=1)\n",
 " plt.xlabel('Oxidation Tempertature, '+' $T_L [K]$')\n",
 " plt.ylim(0, 0.2)\n",
 " plt.ylabel('H_2'+' Productivity')\n",
 " \n",
 "#Plot image with labels and text to reproduce original image as accurately as possible\n",
 "plt.text(1170, 0.182, '$\\delta_i$')\n",
 "plt.text(810, 0.182, '$T_H=2073 K$')\n",
 "plt.text(810, 0.16, '$1973 K$')\n",
 "plt.text(810, 0.105, '$1873 K$')\n",
 "plt.text(810, 0.065, '$1773 K$')\n",
 "plt.text(810, 0.042, '$1673 K$')\n",
 "plt.text(810, 0.024, '$1573 K$')\n",
 "plt.plot(T_ox, np.repeat(d_red[5], 40), 'b--', linewidth=1)\n",
 "plt.show()"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.4"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

