Chapter Problems

Problem 4

Given data arrays of $\Delta h_o(kJ/mol)$ and $\Delta s_o(J/mol * K)$ versus δ for Ceria, fit a third degree poynomical function suitable for describing Δh_o and Δs_o as a function of δ using the _curve*fit* function from the *scipy.optimize* library.

NOTE: For this we will use Python and import tabulated data from a .csv file.

Problem 5

Given a temperature of operation T = 1273K for Ceria and an initial amount of moles of water $n_{H_2O,i} = \delta_f = 0.1$. Solve for δ using an iterative approach.

Background: The partial molar Gibbs free energy for Ceria Δg_o , which is a function of both nonstoichiometry and temperature, is expressed as two equations below:

$$\begin{aligned} \Delta g_o(\delta,T) &= -RT \ln p_{O2}(\delta,T)^{1/2} & (1.50) \\ \Delta g_o(\delta,T) &= \Delta h_o(\delta) - T\Delta s_o(\delta) & (1.51) \end{aligned}$$

Also, the oxygen partial pressure p_{O2} can be obtained from the reaction equilibrium analysis of the dissociation of H_2O . From (1.33) we recognize that the reaction coordinate ϵ is equal to $\delta_f - \delta$,

$$K_{H_2O} = rac{ig(rac{\epsilon}{n_{total}}ig)*{p_O}_2^{1/2}}{ig(rac{n_{H_2O,i}-\epsilon}{n_{total}}ig)} = rac{ig(\delta_f-\delta)*{p_O}_2^{1/2}}{n_{H_2O,i}-ig(\delta_f-\delta)}
onumber \ p_{O2}^{1/2} = rac{n_{H_2O,i}-ig(\delta_f-\delta)}{ig(\delta_f-\delta)*K_{f,H_2O}}$$

NOTE: For this we will use Python, and import data for the equilibrium constant of formation of water K_{f,H_2O} from the <u>NIST-JANAF</u> website. A curve fitting procedure needs to be applied, similar to Problem 4.

Problem 6

Given a temperature of operation T = 1273K for Ceria and an initial amount of moles of water $n_{H_2O,i} = \delta_f = 0.1$. Solve for δ and the H_2 yield. Create a solver/minimizer using the *minimize* function from the *scipy.optimize* library.

NOTE: For this we will use Python, and remember that $H_2 = \delta_f - \delta$, which is the difference between the final and initial nonstoichiometries.

Problem 7

Given 6 different temperatures of reduction $T_H = 1573, 1673, 1773, 1873, 1973, 2073K$, temperature of oxidation $800K < T_L < 1200K$, and oxygen partial pressure $p_{O2} = 0.00001$ for Ceria. Compute H_2 yield to reproduce data from Chueh et al. Figure 17.a

NOTE: For this we will use Python, and remember that $n_{H_2O,i} = \delta_f$ (initial moles of water is equal to the nonstoichiometry after reduction).