
Developed by Jonathan Scheffe

7/10/2020, University of Florida

Solar Time and Solar Time Python Calculator

Solar Time

Solar time is used in all sun-angle relationships. It is based on the apparent angular motion of the sun

across the sky, with solar noon the time the sun crosses the meridian of the observer. Two corrections are

needed to convert from standard time. 1) Correction for difference in longitude between observer’s

meridian and the meridian at which local standard time is based. 2) Correction from the equation of time

which accounts for perturbations in the earth’s rate of rotation. The equation used to calculate solar time

is below.

solar time − standard time = 4(𝐿st − 𝐿loc) + 𝐸

Lst is the standard meridian for the local time zone, Lloc is the longitude of the location in question and E is

the equation of time in minutes. E can be determined graphically from the figure below (from Duffie and

Beckmann, Solar Engineering of Thermal Processes, 4th Edition) or from the equations below from

Duffie and Beckmann (Duffie and Beckmann, Solar Engineering of Thermal Processes, 4th Edition).

𝐸 = 229.2(0.000075 + 0.001868 𝑐𝑜𝑠 𝐵 − 0.032077 𝑠𝑖𝑛 𝐵 − 0.014615 𝑐𝑜𝑠 2 𝐵 − 0.04089 𝑠𝑖𝑛 2 𝐵)

()
360

1 1 365
365

B n n= −  

Here, n is the day in the year and B has units degrees. The units for the right hand side of the equation

used to calculate solar time are minutes.

To determine Lst, multiply the difference in time between local standard clock time and Greenwich Mean

Time (GMT) by 15°. This relationship comes from the

fact that the sun takes 4 minutes to traverse 1° of

longitude. Thus, if your local standard clock is 1 hour

behind GMT then LST is 15°.

You must account for Daylight Savings Time (DST): for

example, DST in the United States takes place between

the dates of March 8th and November 1st. During this

time, the clocks are advanced by 1 hour and thus the

difference between the clocks in the United States and

GMT changes by 1 hour. For example, if DST is 14:00

then Local Standard Time (LST) which should be used to

determine solar time and Lst, is 13:00. Figure 1. Equation of time verses month in the

year. From Duffie and Beckmann, Solar

Engineering of Thermal Processes, 4th Edition

Exercise

Note: these calculations can be done by hand and checked with the python solar time calculator that is

appended to the end of this document. The calculator can be used for any location within the United

States but has not been adapted for other locations yet.

1) In Gainesville, FL what is the solar time corresponding to 10:30 am DST on August 24th?

Longitude of Gainesville = 82.3°. To help with difference between local clock time and

Greenwich Mean Time, or Coordinated Universal Time, UTC you can use

https://www.timeanddate.com/time/zones/edt. For Gainesville the difference between LST and

GMT is 5 hours.

Solution:

Current time is 10:30 am DST, thus

LST = 9:30 am

Because the difference between LST and GMT is 5 hours, the standard meridian, Lst is

Lst = 5*15° = 75°

This is the meridian at which local standard time is based. The longitude, Lst, of Gainesville is

provided and is

 Lst = 82.3°

Here we will use a graphical estimation to determine E using the figure on the prior page.

E ≈ -2

Rearranging the equation used to calculate solar time, we see that

solar time = standard time + 4(𝐿st − 𝐿loc) + 𝐸

solar time = 9:30 + 𝟒(𝟕𝟓° − 𝟖𝟐. 𝟑°) − 𝟐 ≈ 𝟖: 𝟓𝟗

The offset because of 4(𝐿st − 𝐿loc) + 𝐸 was equal to -31.2 minutes which was rounded to -31

minutes.

The exact answer using the python calculator and equation for the equation of time is:

solar time = 𝟖: 𝟓𝟖: 𝟏𝟕

where

E = -2.52, n = 237, B = 232.8

https://www.timeanddate.com/time/zones/edt

Note that the latitude is requested in the python calculator but the calculation is independent of

latitude. You can input Gainesville’s, which is 29.65°, or use a different value.

2) In Gainesville, FL what is the local time corresponding to 12:00 solar time on August 24th?

Longitude of Gainesville = 82.3°. To help with difference between local clock time and

Greenwich Mean Time, or Coordinated Universal Time, UTC you can use

https://www.timeanddate.com/time/zones/edt. For Gainesville the difference between LST and

GMT is 5 hours.

Solution:

Solar time = 12:00

Because the difference between LST and GMT is 5 hours, the standard meridian, Lst is

Lst = 5*15° = 75°

This is the meridian at which local standard time is based. The longitude, Lst, of Gainesville is

provided and is

 Lst = 82.3°

Here we will use a graphical estimation to determine E using the figure on the prior page.

E ≈ -2

Rearranging the equation used to calculate solar time, we see that

standard time = solar time - 4(𝐿st − 𝐿loc) − 𝐸

standard time = 12:00 - 4(75° − 82.3°) + 2 ≈ 12: 31

However, recall that on August 24th, it is DST, thus the local time should be 1 hour greater or

DST ≈ 13:31, or 1:31 pm

https://www.timeanddate.com/time/zones/edt

Appendix

Jonathan Scheffe - Solar Time Calculator 20180903
from datetime import datetime,date,time,timedelta
import time
import math
#from geopy.geocoders import Nominatim
#import matplotlib.pyplot as plt
import numpy as np

understand = str(input("To be used for locations within the continental United States. Understand?
(Enter Y/N)"))
if understand == "Y":
 today = date.today() #todays date in year,month,day
 use_today = str(input("Do you want to use today's date (Y/N)?"))
 if use_today == "N":
 month_enter = int(input("What month are you interested in (e.g. 2,3, etc)? "))
 day_enter = int(input("What day are you interested in(e.g. 2,3, etc)? "))
 date_wanted = date(today.year,month_enter,day_enter)# date of interest for calculation in current
year,month,day
 else:
 date_wanted = date(today.year,today.month,today.day)# date of interest for calculation in current
year,month,day

 date_reference = date(today.year,1,1) # date on Jan 1st of current year
 day_number = (date_wanted-date_reference).days+1 # number of days between date of interest and
Jan 1st
 print ("Day in year is", day_number)
 latitude = float(input("What latitude are you interested in(degrees. N. of Equator is positive and S. is
negative)? "))# latitude of interest in degrees
 longitude = float(input("What longitude are you interested in(degrees. W. of Greenwich merridian is
positive)? "))# longitude of interest in degrees
 timezone = str(input("What timezone are you interested in(Eastern = E, Central = C, Mountain = M,
Pacific = P)? "))# timezone of interest
 if timezone == "E":
 time_difference = 5
 elif timezone == "C":
 time_difference = 6
 elif timezone == "M":
 time_difference = 7
 elif timezone == "P":
 time_difference = 8

 # Determination of B
 def B(n):
 return (n-1)*360/365

 print("B = ",B(day_number))

 # Equation of time calculation
 def E(n):
 return 229.2*(0.000075+0.001868*np.cos(np.radians(B(n)))-0.032077*np.sin(np.radians(B(n)))-
0.014615*np.cos(np.radians(2*B(n)))-0.04089*np.sin(np.radians(2*B(n))))
 print("E = ",E(day_number),"minutes")

 # Declination angle calculation
 def delta(n):
 return 23.45*np.sin(np.radians(360*(284+n)/365))
 print("delta = ",delta(day_number),"degrees")

 # x = np.arange(0, 365, 5)# these next four lines plot declination angle verses time of year
 # y = delta(x)
 # plt.plot(x, y)
 # plt.show()

 # Determine standard and utc times currently
 #standard_time = datetime.time(datetime.now()) #standard time based on current location
 utc_time = datetime.time(datetime.utcnow()) #utc time
 #print (utc_time)
 #print (standard_time)

 if date(today.year,11,4)>date_wanted>date(today.year,3,11): #this checks if the date of interest is
observing DST
 print ("It is Daylight Savings Time (DST)")
 #print (standard_time.hour-1,":", standard_time.minute,":", standard_time.second) # if it is DST
then subtract 1 hour from local time

 else:
 #print (standard_time.hour,":", standard_time.minute,":", standard_time.second)
 print ("It is NOT Daylight Savings Time (DST)")

 use_today_time = str(input("Do you want to use today's current time (Y/N)?"))

 if use_today_time == "Y":
 print ("UTC (Greenwich Mean) Time is ",utc_time)
 if date(today.year,11,4)>date_wanted>date(today.year,3,11): #this checks if the date of interest is
obsevring DST
 standard_time = datetime.utcnow() - timedelta(hours = time_difference-1)
 hours_from_utc = utc_time.hour-standard_time.hour+1 # determine hour difference from
standard time to UTC accounting for DST
 time_longitude = 15*hours_from_utc # determine longitude at which local time is based - in
degrees
 solar_time_difference = 4*(time_longitude-longitude)+ E(day_number)# time difference in
minutes from local meridian
 print ("Standard Time is ",datetime.time(standard_time))

 print ("Solar Time is ",datetime.time(standard_time - timedelta(hours=1,minutes=-
solar_time_difference)))
 solar_time = datetime.time(standard_time - timedelta(hours=1,minutes=-solar_time_difference))
 else:
 standard_time = datetime.utcnow() - timedelta(hours = time_difference)
 hours_from_utc = utc_time.hour-standard_time.hour # determine hour difference from standard
time to UTC accounting for DST
 time_longitude = 15*hours_from_utc # determine longitude at which local time is based - in
degrees
 solar_time_difference = 4*(time_longitude-longitude)+ E(day_number)# time difference in
minutes from local meridian
 print ("Standard Time is ",datetime.time(standard_time))
 print ("Solar Time is ",datetime.time(standard_time - timedelta(minutes=-solar_time_difference)))
 solar_time =datetime.time(standard_time - timedelta(minutes=-solar_time_difference))

 else:
 a=datetime.strptime(input('Specify time (on clock) in HHMMSS format: '), "%H%M%S")
 #print ("Standard Time is ",a.hour,":", a.minute,":", a.second)
 print ("Clock Time is ",datetime.time(a))
 if date(today.year,11,4)>date_wanted>date(today.year,3,11): #this checks if the date of interest is
observing DST
 #standard_time = datetime.utcnow() - timedelta(hours = time_difference-1)
 standard_time = a - timedelta(hours = 1)
 print ("Standard Time is ",standard_time.time())

 utc_time = datetime.time(a + timedelta(hours = time_difference-1))
 hours_from_utc = utc_time.hour-standard_time.hour # determine hour difference from standard
time to UTC accounting for DST
 time_longitude = 15*hours_from_utc # determine longitude at which local time is based - in
degrees
 solar_time_difference = 4*(time_longitude-longitude)+ E(day_number)# time difference in
minutes from local meridian
 print ("UTC (Greenwich Mean) Time is ",utc_time)
 #print ("solar time difference ",solar_time_difference)
 solar_time = standard_time - timedelta(minutes=-solar_time_difference)
 print ("Solar Time is ",solar_time.time())

 else:
 standard_time = a
 print ("Standard Time is ",standard_time.time())

 utc_time = datetime.time(a + timedelta(hours = time_difference))
 hours_from_utc = utc_time.hour-standard_time.hour # determine hour difference from standard
time to UTC accounting for DST
 time_longitude = 15*hours_from_utc # determine longitude at which local time is based - in
degrees
 solar_time_difference = 4*(time_longitude-longitude)+ E(day_number)# time difference in
minutes from local meridian

 print ("UTC (Greenwich Mean) Time is ",utc_time)
 #print ("solar time difference ",solar_time_difference)
 solar_time = standard_time - timedelta(minutes=-solar_time_difference)
 print ("Solar Time is ",solar_time.time())
else:
 print ("Sorry, please run again.")

#Determine hour angle
hour_angle = ((solar_time.hour-12)*60 + solar_time.minute)*15/60
print ("Hour angle = ", hour_angle,"degrees")

