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ABSTRACT

Face swapping combines one face’s identity with another face’s
non-appearance attributes (expression, head pose, lighting) to gen-
erate a synthetic face. This technology is rapidly improving, but
falls flat when reconstructing some attributes, particularly gaze.
Image-based loss metrics that consider the full face do not effec-
tively capture the perceptually important, yet spatially small, eye
regions. Improving gaze in face swaps can improve naturalness and
realism, benefiting applications in entertainment, human computer
interaction, and more. Improved gaze will also directly improve
Deepfake detection efforts, serving as ideal training data for classi-
fiers that rely on gaze for classification. We propose a novel loss
function that leverages gaze prediction to inform the face swap
model during training and compare against existing methods. We
find all methods to significantly benefit gaze in resulting face swaps.
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1 INTRODUCTION

Face swapping is the act of placing a character’s face overtop of an
original face in a piece of media. In deep learning, face swapping is
distinct from the face generation task — the network needs to create
a realistic face that preserves the original attributes (such as head
pose, gaze direction, and mouth movements) while having explicit
control over the face’s identity. Current face swapping methods
have solved the identity reconstruction task, but generally match
all other attributes of the face using a black-box approach.

We leverage a pretrained gaze estimation network to optimize
an existing face swapping pipeline. Using predicted gaze angles of
original and reconstructed faces, we define a reconstruction loss
term focused on the eyes to add a gaze component to the overall
optimization function, enhancing the accuracy of reconstructed
gaze without compromising visual fidelity. Our explicit focus on
preserving gaze behavior could be applied to future face swapping
pipelines. Our implementation alters the optimization function but
does not alter model architecture, meaning that already-trained
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models can be fine-tuned with this improvement in place. We show-
case the method on a popular open-source face swapping network,
seeing significant improvement in reconstructed gaze directions
compared to baseline face swapping.

1.1 Main Contribution

The proposed design improves upon the naturalness and correct-
ness of gaze behavior in generated face swaps, incorporating a pre-
trained deep-learning network to guide training in a novel way. Our
methodology and experiments provide an implementation guide for
facial attribute-based loss functions and reveal their effectiveness,
respectively.

1.2 Ethics of Face Swapping

Face swapping has uses in visual effects, interactions with vir-
tual avatars [Caporusso 2021; Foreman 2019], and privacy protec-
tion [Lee et al. 2021; Wilson et al. 2022; Zhu et al. 2020]; however,
face swapping has become a controversial technology due to its po-
tential for impersonation, spreading misinformation and violating
individuals’ privacy. These so called Deepfakes’ sudden accessibility
has incited public concern and sparked legislative response [Wag-
ner and Blewer 2019]. Yet, responsible innovation on face swapping
is necessary and will lead to positive outcomes. The methods this
paper explores can increase the naturalness of future face swapping
algorithms, making them more feasible in positive applications
for social good. These innovations will also aid in the detection of
Deepfakes. Classifiers based on biometric signals, including gaze
patterns, are being developed for Deepfake detection [Ciftci et al.
2020a,b; Demir and Ciftci 2021; Jung et al. 2020; Li et al. 2018]. These
methods train on real and swapped face videos. By feeding these
models new training data with more believable gaze, we will see
increased accuracy and reliability when detecting fake media across
the internet.

2 RELATED WORK

Recent innovations in image generation techniques, most promi-
nently the generative adversarial network (GAN) [Goodfellow et al.
2014], variational autoencoder (VAE) [Kingma and Welling 2013]
and improvements thereafter [Hou et al. 2017; Karras et al. 2019,
2020; Liu and Tuzel 2016; Radford et al. 2016; Razavi et al. 2019],
have rapidly advanced the ability to create realistic Al-synthesized
faces. These technologies paved the way for powerful, fully auto-
mated face swaps that have become nearly undetectable to naive
human viewers.

The original image-based face swapping algorithm [deepfakes
2017] is a forked autoencoder with two distinct decoders, each train-
ing on a unique identity. Advancements over this initial method
have focused on swapping between arbitrary identities [Chen et al.
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2020; Li et al. 2019; Nirkin et al. 2019], real-time applications [Kor-
shunova et al. 2017], and achieving higher resolutions [Naruniec
et al. 2020; Zhu et al. 2021].

Some image and face synthesis methods have begun to leverage
existing networks, hereafter referred to as pretrained expert models,
as part of their training process. Facial recognition systems [Deng
et al. 2019] have been used to automatically segment identity or to
obtain an overall attribute profile [Chen et al. 2020; Korshunova
et al. 2017; Nitzan et al. 2020; Tang et al. 2019]; facial attribute
extractors have been used to classify the face in an unsupervised
manner [Li and Lin 2019]; landmark estimators have been used to
extract or enforce body/facial structure [Kuang et al. 2021; Nitzan
et al. 2020; Siarohin et al. 2021; Sun et al. 2018]; style transfer
algorithms extract style using pretrained networks’ intermediate
features [Gatys et al. 2016; Johnson et al. 2016; Liu et al. 2021;
Zhang and Dana 2018]. These methods found success using high-
level predictions from pretrained expert models to aid in training
without requiring supervised labels.

The core goal of modern face swapping is to disentangle the em-
bedded feature vector between identity and other facial attributes,
so that identities can be swapped while all other features remain
constant. While each algorithm is unique, in nearly all methods the
problem is framed as identity versus all attributes, i.e. all aspects
outside of identity are placed under a single loss term. For example,
multiple approaches isolate and replace the identity portion within
an autoencoder’s feature embedding [Chen et al. 2020; Korshunova
et al. 2017; Li et al. 2019; Wang et al. 2021]. The overall attribute
profile is preserved, but is enforced only according to a general
image-based reconstruction loss, which may fail to emphasize per-
ceptually relevant features. Particularly, the eyes spatially occupy
only about 5.6% of the face, yet human viewers focus on the eyes
approximately 40% of the time [Janik et al. 1978]. Because features
are derived implicitly from pixel images, the eyes are not priori-
tized, thus have been found to account for a large percent of noticed
artifacts [Wohler et al. 2021].

A simple way to improve results is the brute-force approach —
create a deeper network with a larger latent space. For example,
using eight identity-specific decoders rather than two and increas-
ing model depth [Naruniec et al. 2020]. This is effective yet sees
increased training times and memory requirements. Instead of in-
creasing resources, another potential solution is to add a gaze-aware
constraint to the training process, but this method is not well ex-
plained or evaluated in the corresponding manuscript [Perov et al.
2021].

This work details methods to impose explicit constraints on the
facial attribute profile, incentivizing the network to better preserve
the behavior of the eyes. Our proposed method is modular and
could easily extend existing face swapping architectures, leveraging
pretrained expert models to better inform models of perceptually
important features such as gaze.

3 METHODOLOGY

We propose a novel method to explicitly prioritize gaze over all
other implicitly defined facial attributes when training face swap-
ping models. The proposed method leverages a pretrained gaze
estimation network, using the resulting gaze values to formulate
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a reconstruction loss focused on the eye region of the face. Our
approach is flexible and generalizes, meaning that it can be ap-
plied to any face swapping architecture and with other pretrained
expert models. Already-trained models could also be fine-tuned
with this improvement. We evaluate our method on DeepFaceLab
(DFL) [Perov et al. 2021], comparing against both a gaze-unaware
baseline model and their native solution, which had not been for-
mally analyzed or explained in the literature.

3.1 Overview of DeepFaceLab

DFL is the most popular publicly available face swapping platform,
so is representative of the majority of face swaps found online.
There are many resources online to aid in understanding DFL’s
pipeline!. For explanation and justification of DFL’s model design,
please refer to their manuscript?.

We use DFL’s LIAE architecture, which disentangles identity
with intermediate networks between the encoder and decoder (see
Figure 1). The first intermediate network I4p generates latent vec-
fhf; . and 2‘045 g during the training process. The second inter-
mediate network Ip is only given the original identity to generate
zf”. " Before passing to the decoder, the latent vectors are concate-
nated: the original face’s becomes z‘g‘gg
face’s concatenates a copy of itself to become Z?}ﬁzr | |zCA}fir. These
latent vectors are passed through the respective decoders to recon-
struct the input faces. During face swapping, the original face is
only passed through I4p and concatenated onto itself to generate
latent code zf£g| IZOAEg, which is then fed through the decoder to
generate a face swapped result.
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Figure 1: Illustration of DFL’s LIAE architecture. The path-
way taken to create the resulting face swap is displayed in

red. Note that Z?B . is concatenated with a copy of itself to
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reconstruct the character face, and zfg g

itself to produce the face swap result.

is concatenated with

Intuitively, we can interpret the first latent vector z; to contain
attributes, the second vector z; to contain identity information, and
z1||z2 to contain full facial information. The latent vector z45 never
represents the original face’s identity during training, so becomes
hardwired to the character face’s identity. The LIAE design can be
seen in Figure 1.

During training, DFL uses segmentation masks to isolate the er-
ror calculation to relevant parts of the face [Bulat and Tzimiropoulos
2017]. The three masks utilized are of the face (Mygce), the eyes

!https://mrdeepfakes.com/forums/thread-guide-deepfacelab-2-0-guide
Zhttps://arxiv.org/abs/2005.05535
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(Meyes), and the eyes plus mouth (Me,). In the following equa-
tions, we define the input faces as Y and their reconstructions as Y3,
The reconstruction loss combines difference of structural similarity
(DSSIM) [Wang et al. 2004; Zhao et al. 2017] and mean squared
error (MSE). DSSIM enforces structural consistency between the
input and output face using luminance, contrast, and structural
components, and MSE error enforces pixel-wise similarity. The loss
equations are as follows:

(2pipj + 1) (2045 + c2)

SSIM(Y,Y) = 1
(r.7) (/11.2+/1§+01)(0i2+a]2.+02) M
. 1-SSIM(Y,Y)
LDSSIM(Y, Y) = f (2)
where i, j = sliding windows of size NxN
Wi, jij = average of i, j Uiz, G'JZ- = variance of i, j
0jj = covariance of i, j c1, ¢z = stabilizing variables
1 n
Lyse(Y, V) = = > (¥; = ¥y)? ®)
=

The core reconstruction loss is a weighted sum between DSSIM,
MSE, and an MSE calculation comparing the input and predicted
face masks:

La(Y, ?, Mface: Mance) = MLpssim (Y, YI)"’
AZLMSE(Y’ ?) + ASLMSE (Mfaces Mface) (4)

DFL can explicitly target facial attributes via its optional eyes
and mouth priority term. This integrates well with the main loss
equation, measuring the absolute value of pixel error between the
original and generated faces masked to the eyes and mouth. This is
an optional term that must be enabled by DFL users.

Laem(Y, f/) Mem) = Aem|YMem — ?Meml (5)

3.2 Proposed Gaze Reconstruction Loss

Motivated by previous image generation methods’ success using
pretrained expert models, we leverage a gaze estimation network.
We incorporate L2CS-Net* [Abdelrahman et al. 2022], which pre-
dicts pitch and yaw angles y, ¢ from input face images. This network
is optimized towards unconstrained environments so is well suited
to the data typical in training face swaps. We incentivize the face
swapping model to better reconstruct gaze by penalizing offsets
in predicted gaze angle between the input and reconstructed faces
during training.

Our gaze reconstruction loss is computed as follows. 1 and ¢ are
converted to normalized Cartesian coordinates, then the angle 0

3Note that original and character faces’ reconstruction loss are computed in identical
fashion.
“https://github.com/Ahmednull/L2CS-Net
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Figure 2: Design diagram of the steps to compute the gaze
reconstruction loss.

between the two vectors is found.

¢ = L2CS(Y) i ¢ = L2CS(Y)
x = sin(¢)cos(p) y = sin(§)sin(p)
z = cos(Q) Vi =<xy,z>
% = sin(@)cos(f) g = sin()sin(j)
% = cos($) Vo =< %,0,2>
Error is computed as: 0(Y,Y) = cos™? (% 6)

We apply this error term only to the regions of the network that
correspond to the eyes. We use Y, ¥, and Me yes to construct a recon-
struction loss specific to the eyes that can be scaled by the computed
0 and hyperparameters « and f. We structure our loss equation
similarly to equation 4, using DSSIM and MSE computations on
the original and reconstructed image eye regions. An illustration
of the design and steps taken to compute the loss equation can be
seen in Figure 2.

LAeyes(Y, ?’ Meyes) = Q(Y, ?) (aLDSSIM(YMEyQSs Y/]\/[eyes)"'
ﬁLMSE(YMeyes, ?Meyes)) (7)

4 EVALUATION

We assess the performance of each condition by analyzing the
offset in viewing angles between the face swap and the real face in
the corresponding source video. To compute this metric, we utilize
L2CS-Net [Abdelrahman et al. 2022] to predict a gaze viewing angle
for each condition, considering the source video’s predicted gaze
vector to be the ground truth. In our evaluation we use DFL’s set
parameters for our A values. Namely, A1, A2, A3 = 10, A,m = 300.
When implementing our proposed loss term, we use a = 3 and
B = 30.

4.1 Dataset

We introduce a dataset to serve as a testing ground for our approach.
We generate our face swaps using the source video clips taken from
the FaceForensics++ Deep Fake Detection Dataset® [Rossler et al.

Shttps://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
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2019]. In the dataset, subjects perform the same tasks®, ensuring
similar expression and head pose, making these clips ideal for high
quality face swaps. Our dataset consists of six subject (three female,
three male). For each gender, two subjects have similar appearance
to one another. Per gender, we permute all combinations of subjects
being used as the character and original face, resulting in a total of
12 unique face pairs.

Character ID Original Baseline+em

Baseline (DFL)
- 1

Baseline+ours

Figure 3: Visual comparison of face swaps produced by the
baseline DFL method, DFL with eyes and mouth priority loss
(em), and DFL with our proposed gaze loss. Both improve-
ments over the baseline reduce gaze angle error.

We generate face swaps across multiple conditions, keeping all
other hyperparameters consistent. Every model is pretrained for
100 thousand iterations on the CelebA dataset [Liu et al. 2015], then
trained for the final 20 thousand iterations on the identity pair.
Frames from our generated dataset can be seen in Figure 3. The
conditions are:

e DFL. The model implicitly learns gaze behavior while opti-
mizing the core reconstruction loss in equation 4.

e DFL+em. DeepFaceLab with eyes and mouth priority loss
enabled. DFL’s native solution which further enforces pixel-
wise similarity for the key regions of the face.

e DFL+Gaze. DeepFaceLab with our proposed gaze loss. The
model explicitly enforces consistency using gaze vectors
computed by the pretrained expert model.

e DFL+Gaze (finetuning). The model is pretrained with no
gaze-specific loss, then trained for the final 20 thousand
iterations using our proposed loss.

e DFL+em+Gaze. Both DFL’s native approach and our pro-
posed approach are enabled during training.

4.2 Results

We analyze error values, collapsing from individual frames (~ 2900
per video) to average across each individual in the dataset. The
baseline DFL produces an average error of 5.98°[95% Confidence
Interval (CI): 4.82, 7.13]. All improvements on the baseline method
produce noticeably more accurate gaze values: DFL+em averages
4.85°[95% CI: 3.80, 5.90], DFL+Gaze averages 4.71°[95% CI: 3.66,

The video segments we use are: exit phone room, kitchen pan, outside talking pan
laughing, walking outside cafe disgusted. These are concatenated into a single video 2
minutes in length per subject.
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5.77], DFL+Gaze (finetuning) averages 4.85°[95% CI: 3.80, 5.90],
and DFL+em+Gaze averages 4.72°[95% CI: 3.67, 5.77]. On the test
dataset, introducing DFL’s eyes and mouth priority term decreases
reconstructed gaze error by 18.1%; introducing the proposed method
decreases by 19.7%, and introducing both components decreases
gaze error by 20.32%.

®

Average Gaze error (°)
o

IS

DFL DFL+em

DFL+Gaze DFL+Gaze

(finetuning)

DFL+em+Gaze

Figure 4: Plot of mean gaze error across all evaluated videos
(N = 12) by condition. Individual video results are plotted
over-top and connected across each box plot.

We test for significance via a linear mixed-effects model. We first
compute the average of the log of angular error for each method and
individual, applying the log transform to improve normality of error
distributions. We then model errors as average(log(error)) method
with a random intercept per individual. All improved methods
significantly improve over DFL (p < 0.001). However, we have not
found statistical evidence pair-wise between any of the improved
methods. Interestingly, the DFL+em+Gaze approach combining
pixel information and explicit gaze modeling yielded insignificant
benefit over DFL+em (t(1,44) = 1.603, p = 0.116). This may indicate
that the two optimizations capture similar underlying information.

Each method’s performance across individuals in the dataset is
plotted in Figure 4. We see a large amount of variability among
individual video results in all methods other than DFL, indicating
roughly equivalent performance for all improvements analyzed.
Looking on an individual video basis (Figure 5), relative error re-
mains quite stable across the dataset, suggesting that error is tied
to the properties of the video, i.e. the specific pair of faces involved.

5 DISCUSSION & CONCLUSION

Based on our experiments, the proposed gaze improvement for
face swapping using a pretrained gaze prediction model largely
decreases gaze error by 19.7% when appended to an image-based
reconstruction loss equation. This analysis provided key informa-
tion in enhancing gaze behavior in face swapping models and the
potential benefit that can be provided.

Our method achieves similar performance compared to DFL’s
native solution to the problem (which had not previously been
quantified relative to the baseline). These adjunct approaches likely
capture the same information. However, it is important to note that
the vast majority of face swapping approaches implement neither
approach, so either will improve gaze representation. Compared
to the baseline, a few degrees may or may not have a noticeable
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Figure 5: Average gaze error in degrees for all conditions
evaluated, plotted by individual video.

Average Gaze Error (°)

impact on viewer perception. However, these improvements could
be quite beneficial to aid in the development of biometric Deepfake
classifiers that leverage gaze to label video as real or fake.

Our method uses the same pretrained network in training as our
evaluation pipeline. This opens up the possibility that our model
could have learned to minimize the prediction error for L2CS-Net
rather than generally improving gaze representations. However,
by observing how visually similar our results are to the native
solution and the minimal differences in gaze errors, this concern
is alleviated. Our pipeline leveraged the pretrained gaze model to
derive an angle error 6. If we had instead granted white-box access
to the pretrained model, fitting to the gaze model would be more
likely.

Unlike the native approach, our proposed method incorporates
gaze angle as a high-level feature. This lessens the dependence on
pixel-level matching of the eyes, possibly being more impactful
at higher resolutions. While this analysis focused fully on gaze, a
similar pipeline could be easily developed for other features, such
as expression or head-pose matching. Stacking multiple optimiza-
tions on the same network could improve overall fidelity. Analyzing
the interaction between multiple pretrained expert models as they
guide the same model’s training process is a worthwhile future
direction. The dependence on pretrained expert models to com-
pute gaze vectors will make our approach more appealing as more
advanced predictors are developed. For example, current gaze pre-
dictors are prone to around 4 degrees of prediction error, which is
likely acting as a lower bound on our method’s performance. When
better performing predictors are created, our system will improve
accordingly.

In this paper, we presented a novel loss component that sig-
nificantly increases a face swapping model’s ability to accurately
reconstruct gaze. We compared multiple design decisions, including
a formal analysis of DFL’s eyes and mouth priority method. Our
most successful implementation, combining both optimizations,
decreased gaze reconstruction error by 20.32%. This advancement
improves face swapping technology but is particularly promising
for gaze-based Deepfake detection; such an increase in fidelity will
allow researchers to generate higher quality training datasets that
will lead to better Deepfake detection in real-world settings.
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Introducing Explicit Gaze Constraints to Face Swapping

A SUPPLEMENTARY INFORMATION

A.1 DFL Parameters

All face swaps were generated using a NVIDIA GeForce RTX 2080
Super. The exact run configurations used to generate our face swaps
are outlaid. For training parameters, refer to Figure 6. For merge
parameters, refer to Table 1.

\ DIA GeForce RTX 2
VRAM B8GE

Figure 6: Training parameters used to when generating
all face swap stimuli. Note that the LIAE architecture is
classified as a SAEHD model in DFL’s configurations. The
eyes_mouth_prio parameter was set to true when the pro-
posed gaze term was disabled. target_iter varied depending
on training phase (100k iterations pretraining, 20k iterations
on the end pair of identities).

A.2 Analyzing Distribution of Gaze

We hypothesized that although the DFL+em and DFL+Gaze con-
ditions had similar errors compared to the baseline, the differing
approaches may distribute the data in differing manners. By plot-
ting the pitch and yaw vectors across the frames of video segments
(Figure 7), we see some differences across conditions. It is visually
clear that the baseline DFL distribution does not match the source,
and appears to be much more aligned to the horizontal and vertical
axes than all other conditions. The other conditions are much closer
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Parameter Value
mode (1) overlay
mask mode (4) learned-prd*learned-dst
erode mask modifier 20
blur mask modifier 80
motion blur power 0
output face scale modifier 0
color transfer to predicted face rct
sharpen mode (0) None
super resolution power 0
image degrade by denoise power 0
image degrade by bicubic rescale power 0
degrade color power of final image 0
number of workers 12

Table 1: Merge parameters used to generate our face swap
stimuli after training. Note that the original video clips were
1920x1080 pixels at 24 frames per second and faces were
extracted at 512x512 pixels.

in appearance, yet appear to have variations both in outlier distribu-
tion and cluster shapes. For example, the main cluster for DFL+em
in the bottom row appears to match the source best along the yaw
axis. However, DFL+Gaze better matches pitch and best mimics the
left peninsula that juts out from the bottom of the cluster.

Source DFL DFL+em DFL+Gaze

DFL+em+Gaze

Figure 7: Gaze vectors plotted over all frames of three videos
from our dataset (each row corresponding to one full video).
Pitch angles plotted on the horizontal axis and yaw on the
vertical axis.
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