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A B S T R A C T

Advances in face swapping have enabled the automatic generation of highly realistic
faces. Yet face swaps are perceived differently than when looking at real faces, with
key differences in viewer behavior surrounding the eyes. Face swapping algorithms
generally place no emphasis on the eyes, relying on pixel or feature matching losses
that consider the entire face to guide the training process. We further investigate viewer
perception of face swaps, focusing our analysis on the presence of an uncanny valley
effect. We additionally propose a novel loss equation for the training of face swapping
models, leveraging a pretrained gaze estimation network to directly improve represen-
tation of the eyes. We confirm that viewed face swaps do elicit uncanny responses from
viewers. Our proposed improvements significant reduce viewing angle errors between
face swaps and their source material. Our method additionally reduces the prevalence
of the eyes as a deciding factor when viewers perform deepfake detection tasks. Our
findings have implications on face swapping for special effects, as digital avatars, as
privacy mechanisms, and more; negative responses from users could limit effectiveness
in said applications. Our gaze improvements are a first step towards alleviating negative
viewer perceptions via a targeted approach.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Face swapping is the act of placing a character’s face over-
top of an original face in digital media. Recent deep learning
models capable of face swapping are able to generate highly
realistic faces that are indistinguishable to naive viewers.

Recent perceptual work has found that viewers perceive face
swaps differently than real faces, with a large portion of differ-
ences revolving around perception of the eyes. We hypothesize
that this is due to how face swap models are trained; the main
optimization is to disentangle the identity from non-identity at-
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tributes, yet non-identity attribute matching is typically covered
by broad image reconstruction loss. While human viewers fo-
cus heavily on the eyes, these loss equations do not, and con-
sider the full face equally. We believe that because of this train-
ing paradigm, the generated eyes are lackluster. We also hy-
pothesize that they eyes could influence the presence of a po-
tential uncanny valley effect when viewing face swaps.

We begin our analysis with an investigation into the uncanni-
ness of face swaps. Through a perceptual study, we show that
face swaps generally elicit an uncanny feeling when viewed.
We then evaluate methods to improve the quality of generated
eyes in face swaps. Using predicted gaze angles of original
and reconstructed faces, we define a reconstruction loss term
focused on the eyes to add a gaze component to the overall loss
function, enhancing the accuracy of reconstructed gaze with-
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out compromising visual quality. We evaluate our method via
a perceptual study consisting of deepfake detection and an un-
canniness questionnaire.

Our explicit focus on preserving gaze behavior could be ap-
plied to existing or future face swapping pipelines. Our im-
plementation alters the optimization function but does not alter
model architecture, meaning that already-trained models can
be fine-tuned with this improvement in place. We showcase
the method on a popular open-source face swapping network,
seeing significant improvement in reconstructed gaze directions
compared to baseline face swapping and altering the prevalence
of the eyes as a selective attribute in deepfake detection tasks.

1.1. Extension of Previous Work

This work is a direct extension of the publication Introduc-
ing Explicit Gaze Constraints to Face Swapping [1], presented
at the ACM Symposium on Eye Tracking Research and Applica-
tions (ETRA) 2023. Preliminary work leading to the findings in
Section 3 was presented in poster format as The Uncanniness
of Face Swaps [2] at the”Vision Sciences Society (VSS) Annual
Meeting 2022 and subsequently published in the Journal of Vi-
sion as an extended abstract. At ETRA 2023, we presented a
novel loss equation to guide the training of face swap models
while placing an explicit focus on the eyes, and showed signifi-
cant improvements in gaze reconstruction error over a baseline
architecture. In this extended work, we formally present evi-
dence that face swaps are within the uncanny valley region, then
extend our prior analysis of the proposed gaze improvements to
qualitatively evaluate deepfake detection, attribute importance,
and uncanniness.

1.2. Ethics of Face Swapping

Face swapping has uses in visual effects, interactions with
virtual avatars [3], and privacy protection [4, 5]; however, face
swapping has become a controversial technology due to its po-
tential for impersonation, spreading misinformation and violat-
ing individuals’ privacy. These so called deepfakes’ sudden
accessibility has incited public concern and sparked legisla-
tive response [6]. Yet, responsible innovation on face swap-
ping is necessary and will lead to positive outcomes. The con-
tent this paper explores could increase the naturalness of future
face swapping algorithms, making them more feasible in posi-
tive applications for social good, but also in negative contexts.
The number of emerging commercial applications of this tech-
nology1 indicate that face-editing technologies will remain and
continue to advance [7]. We believe that by openly publishing
innovations in this field, we will be able to benefit the positive
use cases of face swapping while preventing improper and ma-
licious use. The dreary alternative would be the commercializa-
tion of the underlying technologies, making publicly-available
deepfake detection more difficult and less accessible.

1Examples include the use of face swapping and de-aging in blockbuster
films such as Star Wars, the Fast franchise, and the Irishman, and synthesizing
David Beckham’s speech in 9 languages during the Malaria no More campaign
(https://www.synthesia.io/post/david-beckham).

These innovations will aid in future detection of deepfakes,
helping to regulate the technology. Classifiers based on bio-
metric signals, including gaze patterns, are being developed for
deepfake detection [8, 9, 10]. These methods train on real and
swapped face videos. By feeding these models new training
data with more believable gaze patterns, we will narrow the de-
cision boundary between real and fake stimuli, enabling further
training and innovation, ultimately seeing increased accuracy
and reliability when detecting fake media across the internet.

1.3. Main Contributions
This work identifies that face swaps generally do elicit un-

canny feelings in viewers. Given the prevalence of the eyes as
noticed artifacts in prior perceptual studies regarding face swap-
ping, we hypothesize that a large portion of the uncanniness felt
by users could be attributed to the eyes. We then evaluate meth-
ods which place explicit constraints on the eyes during training
of face swapping models, better preserving gaze directions of
the driving video. Our proposed method is modular and could
easily extend existing face swapping architectures. We finally
validate our method’s effect on viewer perception, finding that
our proposed improvements alter the reliability of gaze as a fac-
tor when determining if a face is real or fake.

1.4. Roadmap
In Section 2, we will review related literature, including the

algorithmic improvements that have enabled face swapping to
achieve a high level of realism and user perception of face
swaps and other computer generated faces. In Section 3, we
will detail an experiment that verifies that users do experience
uncanny feelings when viewing face swaps. In Section 4, we
will detail a novel loss formulation which enables face swaps to
directly enforce the accuracy of reconstructed gaze during train-
ing. We will also introduce a perceptual study which aims to
evaluate the efficacy of the improved training paradigm against
a baseline face swap and an alternative method to improve gaze.
In Section 5, we will evaluate our method both quantitatively
via the accuracy of reconstructed gaze and qualitatively based
on responses of the perceptual study. Section 6 will discuss our
findings, their implications to broader applications, and limita-
tions of the given evaluation. Finally, we will conclude with
Section 7.

2. Related Work

We begin this literature overview by presenting a summary
of the algorithmic innovations that have enabled high-quality
synthesized faces which are now very difficult for naive view-
ers to detect. We then cover relevant perceptual insights that
prior research has revealed regarding face swaps. It has been
hypothesized that face swaps could fall within the uncanny val-
ley [11], but there is no existing literature to support or reject
this; we instead highlight a rich body of work assessing the un-
canniness of computer generated avatars, as a key emerging use
for face swapping is to generate custom virtual avatars. We then
discuss key insights regarding the importance of gaze, and why
gaze may not be properly represented in existing face swapping
approaches.

https://www.synthesia.io/post/david-beckham
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2.1. Algorithmic Innovations

Recent innovations in image generation techniques, most
prominently the generative adversarial network (GAN) [12],
variational autoencoder (VAE) [13], diffusion probabilistic
model [14] and key advancements thereafter [15, 16, 17, 18,
19], have rapidly advanced the ability to create realistic AI-
synthesized faces. These technologies paved the way for pow-
erful, fully automated face swaps that have become nearly un-
detectable to naive human viewers.

Face swapping has become an active area of research in re-
cent years [20, 21, 22]. The first deep-learning specialized face
swapping algorithm is a forked autoencoder with two distinct
decoders, each training on a unique identity2 [23]. Advance-
ments over this initial method have focused on swapping be-
tween arbitrary identities [24, 25, 26, 27], real-time applica-
tions [28, 29], and achieving higher resolutions [30, 31, 32]
and pose consistency [33, 34]. There are multiple face swap-
ping platforms online345, making this technology accessible for
VFX artists, hobbyists, and researchers.

Some image and face synthesis methods have begun to lever-
age existing networks, hereafter referred to as pretrained expert
models, as part of their training process. Facial recognition sys-
tems [35, 36] have been used to automatically segment identity
or to obtain an overall attribute profile [26, 37, 34]; facial at-
tribute extractors have been used to classify the face in an unsu-
pervised manner [38, 39]; landmark estimators have been used
to extract or enforce body or facial structure [40, 34, 41, 42];
style transfer algorithms extract style using pretrained net-
works’ [43] intermediate features [27, 44, 45, 46, 47]. These
methods found success using high-level predictions or interme-
diate features from pretrained expert models to aid in training
without requiring supervised labels.

2.2. Perception of Face Swaps

The perception of face swapped videos has been explored
as a way to aid in detection efforts against fake media [48].
Recent work has investigated the accuracy with which humans
can guess if a video is genuine (original/real) or face swapped
(manipulated/fake) [49, 50, 51, 52], what artifacts they pick up
on [53], if the emotions in those videos are rated as relatively in-
sincere [54], and the trustworthiness of generated faces [55, 56].

In contrast to the emerging literature on the perception of
face swaps, there is a rich body of work on the perception of
computer-generated (CG) characters and faces [57, 58, 59, 60].
As virtual characters became more and more realistic, research
focusing on the uncanny valley effect arose [61, 62, 63]. The
uncanny valley can explain the feeling of discomfort elicited
when viewing a synthetic face that is similar to a real face
but not quite right. Originally an observation of human-like
robots [64], the uncanny valley theory has expanded from

2This algorithm was originally shared by Reddit user /u/deepfakes in 2017;
the project is still actively maintained as ”faceswap”: https://github.com/
deepfakes/faceswap

3https://github.com/shaoanlu/faceswap-GAN
4https://github.com/iperov/DeepFaceLab
5https://github.com/deepfakes/faceswap/

robots to other media, such as virtual characters in images and
videos.

CG faces in images have been shown to have a more neg-
ative eeriness effect when compared to human-created faces
along the same human-likeness indices [65]. A justification for
the higher negative reaction to CG faces is a high likelihood in
mismatched realism across different facial features [66], which
has been shown to increase negative affinity [67]. Additionally,
human-like CG characters have been found to have more of an
uncanny effect in video segments compared to still images [68].
In video, the uncanny valley effect has also been shown to be
present in inconsistent or degraded motions [69, 70].

There is little work relating the uncanny valley effect to face
swaps. While Wöhler et al. [55] measure eerieness and appeal
as part of a broader study on personality, uncanniness is not
directly addressed or evaluated in-depth. Yet, in the field of
deepfake detection, biometric-focused detection methods have
seen success [71, 9, 10, 72]. These methods rely on temporal
features such as eye movements, blink patterns, or facial expres-
sions, using irregularities to classify videos as fake. It is clear
that there are inconsistent motions between attributes of real
and swapped faces, indicating that face swaps may fall within
the uncanny valley [73].

2.3. Importance of Gaze

The core goal of modern face swapping is to disentangle
the embedded feature vector between identity and other fa-
cial attributes, so that identities can be swapped while all other
features remain constant. While each algorithm is unique, in
nearly all methods the problem is framed as identity versus
all attributes, i.e. all aspects outside of identity are placed
under a single loss term. For example, multiple approaches
isolate and replace the identity portion of a feature embed-
ding [28, 26, 25, 32] or bake identity into the weights of the
model [30, 23]. The overall attribute profile is preserved, but
is enforced only according to a general image-based recon-
struction loss, which may fail to emphasize perceptually rele-
vant features. Particularly, the eyes spatially occupy only about
5.6% of the face, yet human viewers focus on the eyes approx-
imately 40% of the time [74]. Because features are derived
implicitly from pixel images, the eyes are not prioritized, thus
have been found to account for a large percent of noticed arti-
facts [54, 50, 75].

A simple way to mitigate this shortcoming is through brute
force — create a deeper network with a larger latent space. For
example, using eight identity-specific decoders rather than two
and increasing model depth [76]. This is effective yet sees in-
creased training times and memory requirements. Instead, we
place an explicit focus on the eyes through targeted loss equa-
tions, enforcing the model to prioritize the eyes in a way more
aligned with human perception.

3. Evaluating the Uncanniness of Face Swaps

In prior dealings with face swapping, we had noticed that
faces tended to look off-putting [2]. Prior work has perceptually
analyzed face swaps, finding key differences between viewing

https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap


4 Author Accepted Version /Computers & Graphics (2024)

behaviors when analyzing real or generated faces [54, 50, 75].
We hypothesize that this viewing phenomenon could be ex-
plained under the lens of the uncanny valley effect [64]. The
uncanny valley effect hypothesizes a relation between a charac-
ter’s level of human features and the emotional response elicited
from human viewers. In the space between partially and fully
human, there is a valley where viewers become uncomfortable,
repulsed, and/or unempathetic as the character fails to accu-
rately mimic human features.

We design a perceptual study to evaluate the state of face
swapping technology and its relation to uncanniness and how
these synthetic videos relate to genuine videos that do not con-
tain face swaps. Our hypothesis is:

• H1: Face swapped videos are perceived as more uncanny
than original videos.

3.1. Stimuli

We extract 40 videos from the FaceForensics++ Deepfake
Detection dataset (FF++ DFD)6 [49]. There are 20 face swap
videos and 20 original videos, chosen as the first videos re-
turned when querying the dataset. Each video is trimmed to
the median 10 seconds to standardize video lengths, decrease
study runtime, and eliminate entrance/exit transitions common
in many clips. A selection of example faces from the video clips
can be seen in Figure 1

3.2. Participants

Survey participants were recruited under IRB approved pro-
tocol via several communication channels including word of
mouth and electronic mailing list advertisements (N = 39; 59%
male, 38% female, 2.5% other). The survey population consists
mainly of undergraduate University students. The racial-ethnic
distribution is 77% White, 18% Asian, 5% Black or African
American, 2.5% Native American and 2.5% other, where 5%
of participants report two or more races. 18% report being His-
panic/Latinx. The median age is 21 years (IQR = 20-23.5).
Survey data is anonymized for subsequent analysis.

3.3. Procedure

The survey was conducted online and hosted via Qualtrics7.
Prior to taking the survey, the participants were given a defi-
nition of face swapping and informed that they may encounter
face swaps. However, they were not informed of whether each
video was a face swap or not. Participants were then shown one
stimulus video at a time and asked to watch each video in its
entirety. Participants were then asked to rate the stimulus on
7-point Likert scales between five pairs of bipolar adjectives.

The adjective pairs we have employed are a modified sub-
set of the pairs used by Ho and MacDorman [63] in their se-
mantic differential scales to measure three categories of un-
canniness: humanness, eeriness, and attractiveness. The pair

6https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-
detection.html

7https://www.qualtrics.com

Fig. 1. A selection of stimuli from FF++ DFD used to evaluate uncanni-
ness. Top = face swaps; Bottom = real faces.

Real/Synthetic relates to humanness, Agreeable/Repulsive
relates to attractiveness, and Plain/Weird relates to eeri-
ness. We define Ordinary/Uncanny as a pairing using
adjectives sampled from two pairs (Ordinary/Supernatural,
Bland/Uncanny) from within the eeriness category. Unre-
markable/Unusual proposes new adjectives, but is a similar
pairing to Uninspiring/Spine-tingling and Unemotional/Hair-
raising, both in the eeriness category. Our choice in adjective
pairs cover the full spread of Ho and MacDorman’s proposed
categories with a large emphasis on eeriness. We average the
responses on the five adjective pairs to obtain an overall assess-
ment of the uncomfortable feeling a viewer has, in other words,
the uncanniness of the presented video. A score of one on the
Likert scale represents the words closest to normal, while seven
represents the words analogous to uncanny. Each participant
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viewed each stimulus; presentation order was randomized per
participant to account for an anticipated order-effect bias [77].

3.4. Results

Original Face Swap

Adjective Pair Mean SD Mean SD

Real/
Synthetic 2.11 0.99 5.20 0.90

Agreeable/
Repulsive 2.18 0.95 4.49 0.96

Unremarkable/
Unusual 2.26 0.90 4.80 0.97

Plain/
Weird 2.26 0.90 4.88 0.98

Ordinary/
Uncanny 2.30 1.04 4.74 0.99

Average 2.22 0.93 4.82 0.91

Table 1. Mean and standard deviation of 7-point Likert scale score dis-
tributions per adjective pair (1-7), as well as the overall uncanniness
score. Wilcoxon-Signed-Rank tests [78] for all attributes were significant
at p < 0.0002.

Participants’ uncanniness measurements are averaged over
the group of all twenty original videos and the group of all
twenty face swapped videos, which results in each participant
providing one overall measurement per group. The mean of the
face swap measurements (µ = 4.82, σ = 0.91) exceed the mean
of the original measurements (µ = 2.22, σ = 0.93). We perform
the Wilcoxon-Signed-Rank test [78] to test for the equality of
these two groups. Results show that the face swap and origi-
nal uncanniness measurements are not equal and thus rejects
the null hypothesis for H1 (p < 0.0002). Each adjective pair
response, when analyzed independently, is significantly more
negative for the face swapped video set when compared to the
original. Figure 2 shows the distribution of uncanniness mea-
surements. The means and standard deviations broken down by
adjective pair are additionally reported in Table 1.

Fig. 2. Histogram showing the distribution of participant responses be-
tween original videos and face swapped videos. A higher score represents
a higher overall uncanniness measurement.

3.5. Comparison to Prior Analysis of Face Swaps

In Wöhler et al.’s work assessing the personality of face
swaps as avatars [55], both eerieness and viewer appeal are as-
sessed. These measurements could fall within the established
uncanniness categories of eeriness and attractiveness [63].
Their investigation did not find significant effects across a 7-
way MANOVA, indicating similar personality ratings, and al-
luding to a lack of uncanniness of face swaps. However, our
work yields additional insights by focusing directly on uncan-
niness and discovering significant effects. A number of fac-
tors could contribute to our findings not present in Wöhler et
al.’s [55]; for example, our set of bipolar adjective pairs probes
more subtle viewer insights than a straight-forward prompt of
”I found the person {appealing, eerie}”. Additionally, there
is more diversity in our swapped faces (where their dataset
consists of young-adult German faces, FF++ DFD [49] is a
much more diverse set), and our stimuli containing multiple-
individual conversations. It could be that face swaps would be
acceptable to users in suitable use cases, such as virtual avatars
(with the proper permissions), but elicit uncanniness in cases
where viewers must scrutinize whether the faces are real or
fake.

4. Methodology

Considering our findings establishing that face swaps elicit
uncanniness and previous work that establishes the eyes as a key
region where viewer behavior differs [54, 50, 75], we aim to im-
prove the quality of generated gaze reconstructions in swapped
faces.

We propose a novel method to explicitly prioritize gaze over
all other implicitly defined facial attributes when training face
swapping models. The proposed method leverages a pretrained
gaze estimation network, using the resulting gaze values to for-
mulate a reconstruction loss focused on the eye region of the
face. Our approach is flexible and generalizes, meaning that it
can be applied to any face swapping architecture and with other
pretrained expert models. Already-trained models could also
be fine-tuned with this improvement. We evaluate our method
on DeepFaceLab (DFL) [30], comparing against both a gaze-
unaware baseline model and their native solution, which had
not been formally analyzed or explained in the literature. To
investigate improvements in gaze reconstruction from a quanti-
tative standpoint, we test the following hypotheses:

• H2.1: Explicit gaze constraints during training will di-
rectly improve the accuracy of face swaps’ gaze direction
when compared to the original faces.

• H2.2: Models trained using gaze-centric loss terms de-
rived from a pretrained gaze prediction model will have
more accurate reconstructed gaze direction than models
trained using pixel-based loss terms.

We further validate our results with a perceptual study. We
aim to assess how the proposed gaze constraints affect: (1.)
users’ ability to perform deepfake detection (i.e., can users con-
sciously tell that faces are real/ fake?), (2.) which regions of the
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face inform user decisions, and (3.) user responses regarding
uncanniness. We test the following hypotheses:

• H3.1: Users are less capable of identifying face swaps that
have been generated using models trained with explicit
loss terms.

• H3.2: The eyes will be a less prominent factor in deepfake
detection in face swaps generated using models trained
with explicit loss terms.

• H3.3: Face swaps generated using models trained with ex-
plicit loss terms will be perceived as less uncanny by users
than face swaps generated using baseline models.

4.1. Overview of DeepFaceLab

DFL is the most popular publicly available face swapping
platform, so is representative of a large percentage of face
swaps found online. There are many resources online to aid
in understanding DFL’s pipeline89. For explanation and justi-
fication of DFL’s model design, please refer to their publica-
tion [30].

We use the Lightly Improved Auto-Encoder architecture
(LIAE), which disentangles identity with intermediate networks
between the encoder and decoder (see Figure 3). The first inter-
mediate network IAB generates latent vectors zAB

char and zAB
orig dur-

ing the training process. The second intermediate network IB is
only given the original identity to generate zB

orig. Before passing
to the decoder, the latent vectors are concatenated: the original
face’s becomes zAB

orig||z
B
orig and the character face’s concatenates

a copy of itself to become zAB
char ||z

AB
char. These latent vectors are

passed through the respective decoders to reconstruct the input
faces. During face swapping, the original face is only passed
through IAB and concatenated onto itself to generate latent code
zAB

orig||z
AB
orig, which is then fed through the decoder to generate a

face swapped result.
The training process of the LIAE architecture, and for the

majority of paired face swapping algorithms, does not actually
involve swapping of faces. During training, the objective func-
tion only aims to optimize the reconstruction of the two input
individuals’ faces. During training, IAB is tasked with the non-
identity attributes of both faces plus the identity information of
the character. As a result, the identity information of the char-
acter face becomes baked into the weights of the IAB model.
Intuitively, we can interpret the first latent vector z1 to contain
attributes, the second vector z2 to contain identity information,
and z1||z2 to contain full facial information. During face swap-
ping, the zAB

orig is concatenated with itself, keeping non-identity
attributes but superimposing the character identity which has
been hardwired into the model. The LIAE design can be seen
in Figure 3.

During training, DFL uses segmentation masks to isolate the
error calculation to relevant parts of the face [79]. The three

8https://mrdeepfakes.com/forums/thread-guide-

deepfacelab-2-0-guide
9https://www.deepfakevfx.com/downloads/deepfacelab/

masks utilized are of the face (M f ace), the eyes (Meyes), and
the eyes plus mouth (Mem). In the following equations, we de-
fine the input faces as Y and their reconstructions as Ŷ10. The
reconstruction loss combines difference of structural similarity
(DSSIM) [80, 81] and mean squared error (MSE). DSSIM en-
forces structural consistency between the input and output face
using luminance, contrast, and structural components, and MSE
error enforces pixel-wise similarity. The loss equations are as
follows:

S S IM(Y, Ŷ) =
(2µiµ j + c1)(2σi j + c2)

(µ2
i + µ

2
j + c1)(σ2

i + σ
2
j + c2)

(1)

LDS S IM(Y, Ŷ) =
1 − S S IM(Y, Ŷ)

2
(2)

where i, j = sliding windows of size NxN
µi, µ j = average of i, j σ2

i , σ2
j = variance of i, j

σi j = covariance of i, j c1, c2 = stabilizing variables

LMS E(Y, Ŷ) =
1
n

n∑
i=1

(Ŷi − Yi)2 (3)

The core reconstruction loss is a weighted sum between
DSSIM, MSE, and an MSE calculation comparing the input and
predicted face masks:

L△(Y, Ŷ ,M f ace, ˆM f ace) = λ1LDS S IM(Y, Ŷ)+

λ2LMS E(Y, Ŷ) + λ3LMS E(M f ace, ˆM f ace) (4)

Within DFL’s codebase, there is an optional eyes and mouth
priority parameter. When enabled, an additional loss equation
is applied which focuses on the eyes and the mouth (Equation
5) by measuring the absolute value of pixel error between orig-
inal and generated faces, masked to the eye and mouth regions.
Prior to our work, there existed no formal analysis of the ef-
fectiveness of this method, which is only mentioned briefly in
DFL’s associated publication [30]. We compare our proposed
method both against DFL as a baseline, and DFL with this op-
tional term enabled (which we refer to as DFL+em). Thus, we
also provide the first formal evaluation of the pixel-based ap-
proach to enforce gaze.

L△em(Y, Ŷ ,Mem) = λem|Y Mem − Ŷ Mem| (5)

4.2. Proposed Gaze Reconstruction Loss

Motivated by previous image generation methods’ success
using pretrained expert models, we leverage a gaze estimation
network. We incorporate L2CS-Net11 [82], which predicts pitch
and yaw angles µ, ϕ from input face images. This network is
optimized towards unconstrained environments so is well suited
to the data typical in training face swaps. We incentivize the

10Note that original and character faces’ reconstruction loss are computed in
identical fashion.

11https://github.com/Ahmednull/L2CS-Net

https://mrdeepfakes.com/forums/thread-guide-deepfacelab-2-0-guide
https://mrdeepfakes.com/forums/thread-guide-deepfacelab-2-0-guide
https://www.deepfakevfx.com/downloads/deepfacelab/
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Fig. 3. Illustration of DFL’s LIAE architecture. The pathway taken to create the resulting face swap is displayed in red. Note that zAB
char is concatenated

with a copy of itself to reconstruct the character face, and zAB
orig is concatenated with itself to produce the face swap result.

face swapping model to better reconstruct gaze by penalizing
offsets in predicted gaze angle between the input and recon-
structed faces during training.

Face images are upscaled and normalized by mean and vari-
ance before being processed by L2CS-Net. The gaze angle vec-
tors µ, ϕ are returned for the real faces being analyzed, and µ̂,
ϕ̂ for reconstructed images. We compute the angular offset be-
tween these gaze vectors to then be used as a regularizing term
during the face swap model’s training.

Our gaze reconstruction loss is computed as follows. µ and
ϕ are converted to normalized Cartesian coordinates, then the
angle θ between the two vectors is found.

µ, ϕ = L2CS (Y) µ̂, ϕ̂ = L2CS (Ŷ)
x = sin(ϕ)cos(µ) y = sin(ϕ)sin(µ)
z = cos(ϕ) V1 =< x, y, z >

x̂ = sin(ϕ̂)cos(µ̂) ŷ = sin(ϕ̂)sin(µ̂)

ẑ = cos(ϕ̂) V2 =< x̂, ŷ, ẑ >

Error is computed as: θ(Y, Ŷ) = cos−1
(

V1 · V2

∥V1∥∥V2∥

)
(6)

We apply this error term only to the regions of the network
that correspond to the eyes. We use Y , Ŷ , and Meyes to construct
a reconstruction loss specific to the eyes that can be scaled by
the computed θ and hyperparameters α and β. We structure our
loss equation similarly to equation 4, using DSSIM and MSE
computations on the original and reconstructed image eye re-
gions.

L△eyes(Y, Ŷ ,Meyes) = θ(Y, Ŷ)
(
αLDS S IM(Y Meyes, Ŷ Meyes)+

βLMS E(Y Meyes, Ŷ Meyes)
)

(7)

An illustration of the design and steps taken to compute the
loss equation can be seen in Figure 4.

The proposed method could alternatively be enabled later on
in training to fine-tune the network, opening the possibility of
enhancing existing models. We investigate this in our analysis,
pretraining the network with the baseline method then enabling
the gaze reconstruction loss during the final phase of training.

4.3. Evaluation Dataset
We generate a small dataset to serve as an evaluation platform

for the proposed approach. We generate our face swaps using
the source video clips taken from the FF++ DFD dataset [49].
In the dataset, subjects perform the same tasks12, ensuring sim-
ilar expression and head pose, making these clips ideal for high
quality face swaps. Our dataset consists of 6 subjects (3 female,
3 male). For each gender, two subjects have similar appearance
to one another. Per gender, we permute all combinations of sub-
jects being used as the character and original face, resulting in
a total of 12 unique face pairs, 6 per gender.

We generate face swaps across multiple conditions, keeping
all other hyperparameters consistent. All faces are generated at
128x128 resolution. Every model is pretrained for 100 thou-
sand iterations on the CelebA dataset [83], then trained for the
final 20 thousand iterations on the identity pair. In all con-
ditions, only the training phase is altered and all other com-
ponents (face detection, normalization, video generation, etc.)
are achieved with DFL’s pipeline. Frames from our generated
dataset can be seen in Figure 5. The conditions are:

• DFL. The model implicitly learns gaze behavior while op-
timizing the core reconstruction loss in Equation 4.

• DFL+em. DeepFaceLab with eyes and mouth priority
loss enabled (see Equation 5). DFL’s native solution which
further enforces pixel-wise similarity for the key regions of
the face.

12The video segments we use are: exit phone room, kitchen pan, outside
talking pan laughing, walking outside cafe disgusted. These are concatenated
into a single video ∼2 minutes in length per subject.
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Fig. 4. Design diagram of the steps to compute the gaze reconstruction loss.

• DFL+Gaze. DeepFaceLab with our proposed gaze loss
(see Equations 6 & 7). The model explicitly enforces con-
sistency using gaze vectors computed by the pretrained ex-
pert model.

• DFL+Gaze (finetuning). The model is pretrained with no
gaze-specific loss, then trained for the final 20 thousand
iterations using our proposed loss.

• DFL+em+Gaze. Both em and our proposed approach are
enabled during training.

4.4. Perceptual Validation Survey

Our perceptual study provides further evidence towards the
effectiveness of gaze-centric loss terms when training face
swapping models. These results give insights beyond quanti-
tative error measurements. We implement a between-subjects
design where participants view videos with the same content,
but generated using different face swapping conditions. Our
independent variables are four generation conditions: DFL,
DFL+em, DFL+Gaze, and real (unmodified videos of real
faces). Our dependent variables are scorings for deepfake de-
tection, prevalence of attributes selected as aiding in deepfake
detection, and uncanniness measurement scores.

4.4.1. Stimuli
The videos presented are a subset of the evaluation dataset

described in Section 4.3. 20 total videos are presented, with 18
being face swaps and 2 being videos of real individuals brought
in from FF++ DFD to serve as a control condition. The video
clips are trimmed to talking segments. In every video, the sub-
ject of the clip is first shown facing the left and talking to an-
other person facing opposite the camera. Then, the same sub-
ject is shown in another scene directly facing the camera and

talking13. We preserve the entirety of the selected video seg-
ments, in which the actors perform the same actions, rather than
trimming to a number of frames. The resulting video clips are
between 30 seconds and 1 minute in length.

For each gender, we select 3 face-body pairs such that each
face and each body is represented once. An additional video
is brought in directly from the FF++ DFD dataset with no face
swap manipulation applied. To provide consistent resolution
with other stimuli, the faces of the control videos are extracted,
resized to 128x128, then replaced in each video frame. This
results in 6 swapped face-body pairs and 2 real individuals. For
each of the swapped face-body pairs, we generate 3 videos with
models trained under the 3 conditions: DFL, DFL+em, and
DFL+Gaze.

4.4.2. Participants
Survey participants were recruited under IRB approved pro-

tocol via several communication channels including word of
mouth and electronic mailing list advertisements (N = 109;
51.38% male, 47.71% female, 0.92% other). The survey pop-
ulation consists mainly of undergraduate University students.
The racial-ethnic distribution is 63.30% White, 26.61% Asian,
4.59% Black or African American, 13.76% Hispanic/Latino,
where 12.84% of participants report two or more races. The me-
dian age is 20 years (IQR = 20-26). Survey data is anonymized
for subsequent analysis.

4.4.3. Procedure
The survey was conducted online and hosted via Qualtrics.

Prior to taking the survey, participants were given a definition
of face swapping and informed that the videos seen may or may

13These talking clips correspond to the kitchen pan and outside talking pan
laughing clips in FF++ DFD.
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Fig. 5. Visual comparison of face swaps produced by the baseline DFL method, DFL with eyes and mouth priority loss (em), and DFL with our proposed
loss (gaze). Both improvements over the baseline reduce gaze angle error.

not be face swaps. Participants were then shown one stimulus
video at a time and were asked to watch each video in its en-
tirety.

The study consists of a deepfake detection task paired with
an uncanniness survey. For each video seen, participants were
instructed to move a slider indicating the likelihood that they
believed the shown video to be a face swap. A score of 0 cor-
responds to absolute certainty that the video was real, and a
score of 100 corresponds to absolute certainty that the video
contained a face swap. Participants were also asked to denote
which facial attributes affect their decision, utilizing the subset
of attributes identified by [50] pertaining to the face. Partici-
pants were then asked to select all facial attributes that helped
to make their decision. The choices are forehead/hair, nose,
chin/jaw, eyes, mouth, eyebrows, cheeks, other, and none. We
asked participants to denote these key attributes regardless of
their decision of real or fake; if participants falsely identify that
videos are real but choose an attribute as aiding their decision,
this indicates that the attribute mimicked natural behavior at a
high level. Participants were finally asked to rate the stimulus
on bipolar adjective Likert scales as defined in Section 3.3 to
measure uncanniness.

Each participant saw every face-body pair once and saw each
face swap condition once per gender. The distribution of con-
ditions and face-body pairs evaluated are balanced across par-
ticipants. To further explain, one participant would see the pair
{face 1, body 2} generated with the DFL model, but another
participant would see the same face-body pair generated with
the DFL+Gaze model instead. All participants see all videos
of real individuals. On average, the survey would take 15-20
minutes.

5. Results

We first evaluate our generated dataset quantitatively. The
dataset consists of 12 face-body pairs, with a separate model
trained for each condition, yielding N = 60 models and videos
in total. We then present the results of our perceptual study, pro-
viding qualitative evidence towards the efficacy of the evaluated
gaze loss terms.

5.1. Quantitative Evaluation
We assess the performance of each gaze loss condition by

analyzing the offset in viewing angles between resulting face
swaps and the real faces across the corresponding source video.
To compute this metric, we utilize L2CS-Net [82] to predict a
gaze viewing angle for each condition, considering the source
video’s predicted gaze vector to be the ground truth. In our
evaluation we use DFL’s internal parameters for our λ values.
Namely, λ1, λ2, λ3 = 10, λem = 300. When implementing our
proposed loss term, we use α = 3 and β = 30.

We analyze error values, collapsing from individual frames
(∼2900 per video) to average across each individual in the
dataset. The baseline DFL produces an average error of
5.98° [95% Confidence Interval (CI): 4.82, 7.13]. All im-
provements on the baseline method produce noticeably more
accurate gaze values: DFL+em averages 4.85° [95% CI:
3.80, 5.90], DFL+Gaze averages 4.71° [95% CI: 3.66, 5.77],
DFL+Gaze (finetuning) averages 4.85° [95% CI: 3.80, 5.90],
and DFL+em+Gaze averages 4.72° [95% CI: 3.67, 5.77]. On
the test dataset, introducing DFL’s eyes and mouth priority term
decreases reconstructed gaze error by 18.9%; introducing the
proposed method decreases by 21.2%, and introducing both
components decreases gaze error by 21.1%.

We test for significance via a linear mixed-effects model.
We first compute the average of the log of angular error for
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Fig. 6. Plot of mean gaze error across all evaluated videos (N = 12) by con-
dition. Individual video results are plotted over-top and connected across
each box plot.

each method and individual, applying the log transform to im-
prove normality of error distributions. We then model errors as
average(log(error)) ∼ method with a random intercept per in-
dividual. All evaluated methods significantly improve over the
baseline DFL (p < 0.001), supporting hypothesis H2.1. How-
ever, we have not found statistical evidence pair-wise between
any of the improved methods, and are unable to reject the
null hypothesis for H2.2. Interestingly, the DFL+em+Gaze
approach combining pixel information and explicit gaze mod-
eling yielded insignificant benefit over DFL+em (t(1, 44) =
1.603, p = 0.116). This may indicate that the two optimiza-
tions capture similar underlying information.

Each method’s performance across individuals in the dataset
is plotted in Figure 6. We see a large amount of variabil-
ity among individual video results in all methods other than
DFL, indicating roughly equivalent performance for all im-
provements analyzed.

5.2. Perceptual Evaluation

We evaluate users’ perceptual feedback across the four eval-
uated conditions: real, DFL, DFL+em, DFL+Gaze. We present
our results across 3 metrics of analysis: deepfake detection
results, attribute importance, and uncanniness. Note that the
study is a between-subjects design. While every viewer wit-
nesses the 2 real videos, each viewer witnesses 6 face swapped
videos under the DFL, DFL+em, and DFL+Gaze conditions,
uniformly distributed amongst participants. We are able to di-
rectly compare between the face swap conditions to measure
the minute differences produced by each face swap across all
viewers; however, the real videos are distinct and serve mainly
as a control condition.

5.2.1. Deepfake Detection
We first analyze viewers’ ability to detect whether videos are

real or fake under the different face swap conditions analyzed.
Viewer responses are confidence values that the viewed video
is a deepfake on a continuous scale from 0 to 100%. Following
the deepfake detection methodology from [51], we code viewer
confidence values into concrete classifications of real or fake,
modeling average performance across the population. Through
this presentation to participants, viewers tend to more deeply

Fig. 7. Coded user responses for the deepfake detection task. Viewer re-
sponses ranging from [0-100] are remapped to 0 and 1. Significant
differences are reported for the Mann-Whitney U test [84]. 95% CIs are
displayed.

analyze the presented faces while considering their own confi-
dence, rather than presenting participants with a two-alternative
forced choice. Viewer responses below 50% are coded as 0, in-
dicating that the viewer believed the video to be real. Reponses
above 50% are coded as 1, indicating that the viewer believed
the video to be a fake. By averaging across all viewer responses,
we receive the average likelihood that a viewer would believe
the video to be a fake.

For the real video stimuli, the likelihood is 20.19% [95%
CI: 14.74, 25.65]. For baseline DFL, the likelihood is 70.67%
[95% CI: 64.48, 76.86]. DFL with pixel-based loss (DFL+em)
is 66.83% [95% CI: 60.43, 73.22] and DFL with the proposed
gaze estimation loss (DFL+Gaze) is 70.67% [95% CI: 64.48,
76.86]. While all face swap conditions are statistically signifi-
cant (p < 0.001) via the Mann-Whitney U test [84] compared
to the real video condition; we have not found statistical signif-
icance when comparing DFL+em and DFL+Gaze against the
baseline DFL. Figure 7 displays the average likelihood for each
stimuli across all participants. Based on these findings, we can
not confirm H3.1, as we do not see significant changes in deep-
fake detection between conditions.

5.2.2. Attribute Importance
When participants perform the deepfake detection task, they

are also prompted to select which facial attributes aid in their
decision. This choice provides information both when viewers
correctly perform deepfake detection and when incorrect. If a
specific attribute is chosen to aid the viewer in correctly identi-
fying a video as fake, then the attribute is a telling factor which
is likely not correctly reconstructed from the source video. Al-
ternatively, if the attribute is chosen as aiding the viewer in in-
correctly labeling a fake video as real, then the attribute func-
tions as a red herring, being realistic enough to trick the viewer.

We report the prevalence of each attribute as how often it is
selected as a factor in the videos that participants perceived as
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either real or as deepfakes, respectively. We additionally report
the sum prevalence across all videos regardless of prediction.

We report these metrics for all attributes in Table 2. As we
are particularly focused on the eyes, we report the prevalence of
the eyes for our face swap conditions here. Across the videos
predicted as deepfakes (the viewer has correctly identified the
video as fake), DFL prevalence is 71.23% [95% CI: 63.89,
78.58], DLF+em prevalence is 67.41% [95% CI: 59.5, 75.31],
and DFL+Gaze prevalence is 62.94% [95% CI: 55.02, 70.85].
These results confirm that the eyes are a key factor in human
deepfake detection, being chosen substantially more often as a
feature than other attributes. Additionally, both improvements
over the baseline DFL result in a reduced prevalence of the eyes
as a factor. We verify significance across conditions using the
Kruskal-Wallis H test (H = 16.27, p < 0.001). We investigated
individual effect via the Mann-Whitney U Test [84] between
each pair of conditions. All conditions are significant against
real videos (p < 0.001), but further measures against the DFL
baseline are not shown to be significant. DFL+Gaze has a re-
duced prevalence of the eyes of 8.29% compared to the baseline
DFL (p = 0.13), whereas DFL+em reduced eye prevalence by
only 3.82% (p = 0.48). Interaction between DFL+Gaze and
DFL+em is not significant (p = 0.43). These results provide
evidence towards H3.2. However, across all face swap meth-
ods the eyes are selected over 50% of the time when making the
incorrect decision. This likely indicates that while the eyes can
be a key feature for deepfake detection, it is easy for individuals
to attribute a false sense of security in their choice by focusing
on the eyes.

The mouth is also an attribute of interest, and the second most
prominent attribute selected to aid deepfake detection. Results
for the mouth are generally close to 50% when correctly or in-
correctly classifying the face swap videos, indicating that the
mouth may not be a reliable feature despite viewers consider-
ing it perceptually important. However, it is important to note
that the DFL+em condition places pixel loss on a masked re-
gion of both the eyes and mouth, while the DFL+Gaze condi-
tion focuses only on the eyes. We see DFL+em decrease the
presence of the mouth during correct deepfake prediction by
9.72%, while DFL+Gaze increases presence by 13.01%. This
indicates that there is a trade-off present; by solely focusing on
the eyes, the accuracy and realism of the generated mouth may
decrease.

5.2.3. Uncanniness

Average bipolar adjective scores and standard deviations are
reported in Table 3. The average score for the real videos is
2.41±1.17. The average uncanniness for the baseline face swap
condition is 4.08±1.42; DFL+em is 3.85±1.48; DFL+Gaze is
4.02±1.57. The results cover a similar distribution to uncanni-
ness metrics collected on the FF++DFD dataset in Table 1. De-
spite the trends seen in the deepfake detection task, we are un-
able to derive significant differences between the baseline DFL
and each gaze improvement method with regards to uncanni-
ness, and thus unable to reject the null hypothesis for H3.3.

Table 2. User responses to attributes selected as aiding in their deepfake
detection decision. The columns Real and Deepfake indicate participant se-
lections when the stimuli was perceived as the respective category. Cells in
which users correctly identified the true class of the video are highlighted.

Influence on user predictions

Attribute Stimuli Real Deepfake Total

Forehead/
Hair

Real 47.62% 22.50% 42.79%

DFL 38.71% 31.51% 33.65%

DFL+em 41.10% 42.22% 41.83%

DFL+Gaze 43.08% 37.06% 38.94%

Eyes

Real 67.86% 37.50% 62.02%

DFL 59.68% 71.23% 67.79%

DFL+em 56.16% 67.41% 63.46%

DFL+Gaze 60.00% 62.94% 62.02%

Eyebrows

Real 26.79% 30.00% 27.40%

DFL 17.74% 19.18% 18.75%

DFL+em 15.07% 22.96% 20.19%

DFL+Gaze 21.54% 23.78% 23.08%

Nose

Real 13.69% 7.50% 12.50%

DFL 17.74% 11.64% 13.46%

DFL+em 15.07% 19.26% 17.79%

DFL+Gaze 10.77% 20.28% 17.31%

Mouth

Real 64.88% 62.50% 64.42%

DFL 59.68% 53.42% 55.29%

DFL+em 46.58% 43.70% 44.71%

DFL+Gaze 47.69% 66.43% 60.58%

Cheeks

Real 25.00% 12.50% 22.60%

DFL 22.58% 21.23% 21.63%

DFL+em 41.10% 23.70% 29.81%

DFL+Gaze 24.62% 25.87% 25.48%

Chin/
Jaw

Real 19.64% 42.50% 24.04%

DFL 27.42% 21.92% 23.56%

DFL+em 31.51% 25.19% 27.40%

DFL+Gaze 20.00% 24.48% 23.08%

Other

Real 16.67% 12.50% 15.87%

DFL 12.90% 17.12% 15.87%

DFL+em 15.07% 14.81% 14.90%

DFL+Gaze 13.85% 14.69% 14.42%

None

Real 3.57% 5.00% 3.85%

DFL 9.68% 0.68% 3.37%

DFL+em 15.07% 0.74% 5.77%

DFL+Gaze 10.77% 2.10% 4.81%
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Table 3. Mean and standard deviation of 7-point Likert scale responses per
adjective pair across each of the evaluated stimuli. All face swap conditions
are statistically significant against the Real videos via the Mann-Whitney
U test [84].

Attribute
Pair

Real DFL DFL+
em

DFL+
Gaze

Real/
Synthetic

2.17
±1.32

4.37
±1.84

4.11
±1.91

4.35
±1.95

Agreeable/
Repulsive

2.23
±1.25

3.48
±1.48

3.25
±1.49

3.49
±1.58

Unremarkable/
Unusual

2.68
±1.44

4.18
±1.53

4.01
±1.65

4.10
±1.68

Plain/
Weird

2.59
±1.35

4.14
±1.65

3.92
±1.67

4.09
±1.74

Ordinary/
Uncanny

2.40
±1.45

4.23
±1.74

3.96
±1.75

4.06
±1.87

Average 2.41
±1.17

4.08
±1.42

3.85
±1.48

4.02
±1.57

6. Discussion

This work contributed to the growing discussion around hu-
man perception of face swaps. We are the first to our knowl-
edge to relate user perceptions of face swaps to uncanniness.
Our results verify that face swaps do generally elicit more un-
canniness than real video counterparts. Knowing this, there
could be negative consequences in systems that implement face
swaps for digital twins [3], digital effects [76], or privacy pro-
tection [5, 4, 41, 85, 40, 86]. User experience in these systems
could suffer if the generated media is perceived as uncanny or
unsettling.

Based on our experiments, the proposed gaze improvement
for face swapping using a pretrained gaze prediction model sig-
nificantly decreases gaze error. In a perceptual study, we have
seen the proposed method impact users’ perception of the eyes,
specifically decreasing the prevalence of the eyes as a reliable
factor when performing a deepfake detection task.

Based on our study verifying that generated face swaps can
elicit uncanny feelings in viewers, and based on prior works
analyzing user perceptions of face swaps [54, 50, 75], we hy-
pothesized that the eyes could attribute to perceived uncanni-
ness, and that improving the quality of reconstructed gaze could
alleviate uncanniness (H3.3). While we did not produce suffi-
cient evidence towards a decrease in uncanniness, our study has
unveiled differences in human deepfake detection, particularly
around viewer perception of the eyes. With our method in place,
the eyes are a less reliable feature for human deepfake detec-
tion. These improvements could be quite beneficial to aid in
the development of biometric deepfake classifiers that leverage
gaze to label video as real or fake, by enabling the generation
of higher quality training data [10, 71, 9, 72].

6.1. Generalizing our Findings
We have provided evidence to indicate that face swaps elicit

uncanniness, but have not shown evidence of an uncanny val-

ley. The level of uncanniness experienced could depend on a
number of factors, from source video quality or context to the
algorithm used. The analyzed dataset contains high quality data
with high semantic pairing between subjects; in-the-wild video
segments could have various pitfalls that both lower face swap
quality and/ or increase the uncanniness experienced. It would
be a worthwhile future direction to more concretely map the
uncanniness of face swaps given various factors.

DFL remains the most popular system online for visual ef-
fects face swapping and is continually being updated. However,
there are a growing number of face swapping publications spe-
cializing on arbitrary face swapping [24, 25, 26, 27] and super-
resolution [30, 31, 32]. These competing models are unlikely to
have eliminated the presence of uncanniness, but should be in-
vestigated further to better quantify the effect across algorithms.

In addition to our proposed method (DFL+Gaze), which uses
a pretrained gaze expert model to inform the training process,
we also evaluate a pixel-matching method using masked eye re-
gions (DFL+em), which, to our knowledge, is the only existing
technique to prioritize eyes in face swapping. We provide the
first empirical evaluation of both approaches, seeing compara-
ble effectiveness in gaze reconstruction accuracy. However, we
were unable to find statistically significant differences between
our proposed method and the DFL+em baseline, and are unable
to reject H2.2. It is likely that the two approaches capture the
same underlying information. Our proposed gaze loss term in-
corporates gaze angle as a high-level feature. This lessens the
dependence on pixel-level matching of the eyes, possibly be-
ing more impactful at higher resolutions, but insignificant at the
evaluated 128x128 resolution. However, it is important to note
that the vast majority of face swapping approaches implement
neither approach, so either could help to improve gaze repre-
sentation.

DFL supports up to 640x640 and other super-resolution sys-
tems can support up to 1024x1024 [31, 76] given sufficient
compute resources. Our explicit focus on preserving gaze be-
havior could be applied to other face swapping pipelines. Our
implementation alters the optimization function but does not al-
ter model architecture, meaning that our approach is fully ad-
ditive. Additionally, already-trained models could be further
fine-tuned with this improvement in place.

While this analysis focused fully on gaze, a similar loss equa-
tion could be easily developed for other features, such as ex-
pression or head-pose matching. Stacking multiple optimiza-
tions on the same network could improve overall quality. Be-
cause our method’s success is dependent on the pretrained gaze
estimation model, the proposed approach will become more ap-
pealing as more advanced predictors are developed. For exam-
ple, current gaze predictors are prone to around 4° of prediction
error, which likely bounds our method’s performance. When
better performing predictors are created, our system will im-
prove accordingly.

6.2. Limitations

Our method uses the same pretrained network in training
as our evaluation pipeline. This opens up the possibility that
our model could have learned to minimize the prediction error
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for L2CS-Net rather than generally improving gaze representa-
tions. However, by observing how visually similar our results
are to the native solution and the minimal differences in gaze
errors, this concern is somewhat alleviated. Our pipeline lever-
aged the pretrained gaze model to derive an angle error θ. If we
had instead granted white-box access to the pretrained model’s
parameters, fitting to the gaze model would be more likely.

Our perceptual validation study provided some qualitative
evidence towards the efficacy of our method. However, the
study exists on quite a small scale, only evaluating a small num-
ber of videos, all of which are specifically designed to enable
high semantic quality in face swaps. It would be worthwhile
to further explore the potential improvements by focusing gaze
during face swap training. Results may be more significant on
larger or more challenging stimuli sets, particularly in-the-wild
videos which are subject to much lower data quality and more
extreme head poses and gaze directions.

7. Conclusion

In this paper, we first identified the eyes as key features in
previous studies revolving around the perception of face swaps.
Analyzing the training processes of face swapping models, we
identified that typically training methodologies lack emphasis
on the eye regions, which could be a cause for the perceptual
differences seen.

We then evaluate two low-cost training improvements that
can aid models in better reconstructing eye gaze. We evaluated
a simple improvement using image masks to isolate the eyes
and apply a more specific pixel-wise error metric. We addi-
tionally proposed a novel loss equation which uses a pretrained
gaze estimation model to guide training. Both methods were
successful in improving the accuracy of reconstructed gaze an-
gles, yielding average improvements of 18.9% and 21.2%, re-
spectively.

We chose to further evaluate our results qualitatively under
the lens of the uncanny valley effect. We are the first to our
knowledge to analyze face swaps in terms of uncanniness. We
found evidence that face swaps do generally exist within the
uncanny valley. With our gaze improvements in place, we did
not find significant improvements amongst uncanniness scores,
but we did find that the eyes of our generated faces are less
prominent as a decision factor for classifications as real or fake.

This advancement improves face swapping technology but is
particularly promising for gaze-based deepfake detection; such
an increase in fidelity will allow researchers to generate higher
quality training datasets that will lead to better deepfake detec-
tion in real-world settings. The additional findings regarding
uncanniness will be an evaluation metric for future researchers
implementing face swaps.
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[78] Rey, D, Neuhäuser, M. Wilcoxon-Signed-Rank Test. In: Lovric,
M, editor. International Encyclopedia of Statistical Science. ISBN 978-
3-642-04898-2; 2011, p. 1658–1659. URL: https://doi.org/10.
1007/978-3-642-04898-2_616. doi:10.1007/978-3-642-04898-
2_616.

[79] Bulat, A, Tzimiropoulos, G. How Far Are We From
Solving the 2D & 3D Face Alignment Problem? (And a
Dataset of 230,000 3D Facial Landmarks). 2017, p. 1021–
1030. URL: https://openaccess.thecvf.com/content_iccv_

http://dx.doi.org/10.1109/UEMCON54665.2022.9965697
https://openaccess.thecvf.com/content_ICCV_2019/html/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.html
https://dl.acm.org/doi/10.1145/3411764.3445699
http://dx.doi.org/10.1145/3411764.3445699
https://www.pnas.org/doi/10.1073/pnas.2110013119
http://dx.doi.org/10.1073/pnas.2110013119
http://dx.doi.org/10.1073/pnas.2110013119
http://arxiv.org/abs/2202.12883
http://arxiv.org/abs/2202.12883
http://dx.doi.org/10.48550/arXiv.2202.12883
http://dx.doi.org/10.1007/978-3-030-63426-1_13
https://dl.acm.org/doi/10.1145/3411764.3445627
http://dx.doi.org/10.1145/3411764.3445627
https://dl.acm.org/doi/10.1145/3514197.3549687
https://dl.acm.org/doi/10.1145/3514197.3549687
http://dx.doi.org/10.1145/3514197.3549687
https://www.pnas.org/doi/full/10.1073/pnas.2120481119
https://www.pnas.org/doi/full/10.1073/pnas.2120481119
http://dx.doi.org/10.1073/pnas.2120481119
http://dx.doi.org/10.1073/pnas.2120481119
https://dl.acm.org/doi/10.1145/2185520.2185587
https://dl.acm.org/doi/10.1145/2185520.2185587
http://dx.doi.org/10.1145/2185520.2185587
https://dl.acm.org/doi/10.1145/1823738.1823740
https://dl.acm.org/doi/10.1145/1823738.1823740
http://dx.doi.org/10.1145/1823738.1823740
https://dl.acm.org/doi/10.1145/2492494.2502059
https://dl.acm.org/doi/10.1145/2492494.2502059
http://dx.doi.org/10.1145/2492494.2502059
https://dl.acm.org/doi/10.1145/3424636.3426904
http://dx.doi.org/10.1145/3424636.3426904
https://www.sciencedirect.com/science/article/pii/S0747563208002379
https://www.sciencedirect.com/science/article/pii/S0747563208002379
http://dx.doi.org/10.1016/j.chb.2008.12.026
http://dx.doi.org/10.1016/j.chb.2008.12.026
http://dx.doi.org/10.1109/MCG.2008.79
https://doi.org/10.1007/s12369-016-0380-9
https://doi.org/10.1007/s12369-016-0380-9
http://dx.doi.org/10.1007/s12369-016-0380-9
http://dx.doi.org/10.1007/s12369-016-0380-9
http://dx.doi.org/10.1109/MRA.2012.2192811
https://doi.org/10.1177/0301006619869134
http://dx.doi.org/10.1177/0301006619869134
http://dx.doi.org/10.1016/j.cognition.2017.01.009
https://www.sciencedirect.com/science/article/pii/S0010027715300755
https://www.sciencedirect.com/science/article/pii/S0010027715300755
http://dx.doi.org/10.1016/j.cognition.2015.09.019
http://dx.doi.org/10.1007/978-3-642-33197-8_62
https://doi.org/10.1167/7.9.477
http://dx.doi.org/10.1167/7.9.477
https://www.sciencedirect.com/science/article/pii/S0010027713002114
https://www.sciencedirect.com/science/article/pii/S0010027713002114
http://dx.doi.org/10.1016/j.cognition.2013.11.001
http://dx.doi.org/10.1016/j.cognition.2013.11.001
http://dx.doi.org/10.1109/TPAMI.2020.3009287
http://dx.doi.org/10.1109/TPAMI.2020.3009287
http://dx.doi.org/10.1109/WIFS.2018.8630787
https://open.mitchellhamline.edu/cgi/viewcontent.cgi?article=1276&context=mhlr
https://open.mitchellhamline.edu/cgi/viewcontent.cgi?article=1276&context=mhlr
http://dx.doi.org/10.2466/pms.1978.47.3.857
http://dx.doi.org/10.2466/pms.1978.47.3.857
https://dl.acm.org/doi/10.1145/3382507.3418857
http://dx.doi.org/10.1145/3382507.3418857
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14062
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14062
http://dx.doi.org/10.1111/cgf.14062
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/978-3-642-04898-2_616
http://dx.doi.org/10.1007/978-3-642-04898-2_616
http://dx.doi.org/10.1007/978-3-642-04898-2_616
https://openaccess.thecvf.com/content_iccv_2017/html/Bulat_How_Far_Are_ICCV_2017_paper.html


16 Author Accepted Version /Computers & Graphics (2024)

2017/html/Bulat_How_Far_Are_ICCV_2017_paper.html.
[80] Wang, Z, Bovik, A, Sheikh, H, Simoncelli, E. Image quality assess-

ment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 2004;13(4):600–612. doi:10.1109/TIP.2003.
819861.

[81] Zhao, H, Gallo, O, Frosio, I, Kautz, J. Loss Functions for Image
Restoration With Neural Networks. IEEE Transactions on Computational
Imaging 2017;3(1):47–57. doi:10.1109/TCI.2016.2644865.

[82] Abdelrahman, AA, Hempel, T, Khalifa, A, Al-Hamadi, A,
Dinges, L. L2CS-Net : Fine-Grained Gaze Estimation in Uncon-
strained Environments. In: 2023 8th International Conference on Fron-
tiers of Signal Processing (ICFSP). 2023, p. 98–102. URL: https:
//ieeexplore.ieee.org/abstract/document/10372944. doi:10.
1109/ICFSP59764.2023.10372944.

[83] Liu, Z, Luo, P, Wang, X, Tang, X. Deep Learning
Face Attributes in the Wild. 2015, p. 3730–3738. URL:
https://openaccess.thecvf.com/content_iccv_2015/html/

Liu_Deep_Learning_Face_ICCV_2015_paper.html.
[84] McKnight, PE, Najab, J. Mann-Whitney U Test. In: The

Corsini Encyclopedia of Psychology. ISBN 978-0-470-47921-6; 2010,
p. 1–1. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470479216.corpsy0524. doi:10.1002/9780470479216.
corpsy0524.

[85] Gafni, O, Wolf, L, Taigman, Y. Live Face De-Identification
in Video. 2019, p. 9378–9387. URL: https://openaccess.

thecvf.com/content_ICCV_2019/html/Gafni_Live_Face_De-

Identification_in_Video_ICCV_2019_paper.html.
[86] Wilson, E, Shic, F, Skytta, J, Jain, E. Practical Digital Disguises:

Leveraging Face Swaps to Protect Patient Privacy. 2022. URL: http://
arxiv.org/abs/2204.03559. doi:10.48550/arXiv.2204.03559.

https://openaccess.thecvf.com/content_iccv_2017/html/Bulat_How_Far_Are_ICCV_2017_paper.html
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TCI.2016.2644865
https://ieeexplore.ieee.org/abstract/document/10372944
https://ieeexplore.ieee.org/abstract/document/10372944
http://dx.doi.org/10.1109/ICFSP59764.2023.10372944
http://dx.doi.org/10.1109/ICFSP59764.2023.10372944
https://openaccess.thecvf.com/content_iccv_2015/html/Liu_Deep_Learning_Face_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Liu_Deep_Learning_Face_ICCV_2015_paper.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524
http://dx.doi.org/10.1002/9780470479216.corpsy0524
https://openaccess.thecvf.com/content_ICCV_2019/html/Gafni_Live_Face_De-Identification_in_Video_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Gafni_Live_Face_De-Identification_in_Video_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Gafni_Live_Face_De-Identification_in_Video_ICCV_2019_paper.html
http://arxiv.org/abs/2204.03559
http://arxiv.org/abs/2204.03559
http://dx.doi.org/10.48550/arXiv.2204.03559

	Introduction
	Extension of Previous Work
	Ethics of Face Swapping
	Main Contributions
	Roadmap

	Related Work
	Algorithmic Innovations
	Perception of Face Swaps
	Importance of Gaze

	Evaluating the Uncanniness of Face Swaps
	Stimuli
	Participants
	Procedure
	Results
	Comparison to Prior Analysis of Face Swaps

	Methodology
	Overview of DeepFaceLab
	Proposed Gaze Reconstruction Loss
	Evaluation Dataset
	Perceptual Validation Survey
	Stimuli
	Participants
	Procedure


	Results
	Quantitative Evaluation
	Perceptual Evaluation
	Deepfake Detection
	Attribute Importance
	Uncanniness


	Discussion
	Generalizing our Findings
	Limitations

	Conclusion

