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Abstract—Virtual and mixed-reality (XR) technology has advanced significantly in the last few years and will enable the future of
work, education, socialization, and entertainment. Eye-tracking data is required for supporting novel modes of interaction, animating
virtual avatars, and implementing rendering or streaming optimizations. While eye tracking enables many beneficial applications
in XR, it also introduces a risk to privacy by enabling re-identification of users. We applied privacy definitions of k-anonymity and
plausible deniability (PD) to datasets of eye-tracking samples and evaluated them against the state-of-the-art differential privacy (DP)
approach. Two VR datasets were processed to reduce identification rates while minimizing the impact on the performance of trained
machine-learning models. Our results suggest that both PD and DP mechanisms produced practical privacy-utility trade-offs with
respect to re-identification and activity classification accuracy, while k-anonymity performed best at retaining utility for gaze prediction.

Index Terms—Privacy, Eye Tracking, Re-identification, Biometrics

1 INTRODUCTION

Eye-tracking data presents a critical risk to privacy, as it captures sensi-
tive information about the user based on where they look and introduces
the risk of re-identification from captured data. Reducing the risk of
re-identification from XR data was highlighted as the first recommenda-
tion of the IEEE Global Initiative on Ethics of Extended Reality report
on XR and the Erosion of Anonymity and Privacy [47]: “XR stake-
holders should actively develop and/or support efforts to standardize
differential privacy and/or other privacy protocols that provide for the
protection of individual identities and data.” Eye trackers are among
the XR sensors capable of accurate identification and recognition of
users.

Eye-tracking data applied as a biometric is well studied both for iris
recognition [32, 33] and gaze-based identification [20, 23, 24, 45, 59].
State-of-the-art eye movement biometrics can achieve an accuracy as
high as 94% [59] and an Equal Error Rate of 2% [45], suggesting that,
with high enough data quality, users are recognized as accurately as a
four-digit pin with as little as five seconds of data [44].

Eye-tracking datasets are released publicly for research use or stored
internally by XR companies to train proprietary models for product
deployment. Datasets are anonymized by removing personal informa-
tion such as names, locations, and dates of birth; however, they are
still susceptible to re-identification attacks. A well-known example
of a re-identification attack is from the Netflix Prize challenge [52].
Narayanan and Shmatikov took the released anonymous movie ratings
combined with rental dates and matched them with public reviews from
IMDB that were timestamped and linked to the user’s real name. The
risk of leaking users’ identities and viewing patterns led to a lawsuit that
claimed a woman’s sexual orientation could be revealed to her family
as a result of the attack [60]. In the above scenario, harm to individu-
als resulted from unauthorized disclosure of a sensitive attribute (i.e.,
viewing patterns that could reveal sexual orientation). Such risks are
increasingly relevant for eye-tracking data, as gaze has the potential
reveal age [67], sexual orientation [56], and personality traits [7].
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The current privacy recommendation for protecting eye-tracking
samples against re-identification is through an API design that witholds
gaze samples [16]. While privacy by limiting data access provides
strong defense against re-identification, applications such as foveated
rendering and gaze prediction can no longer be supported.

Current research in formal privacy guarantees for releasing gaze
data have focused on differential privacy (DP) [11, 42, 43, 63]. Dwork
proposed DP to release aggregate metrics while protecting individual
data points with a strong privacy guarantee due to the formal bound on
output distributions [18,19]. DP is robust as it is able to protect privacy
even in the worst-case scenario where an adversary has gained access
to all other data points in the original dataset.

Research on privacy guarantees for novel data types and applica-
tions has introduced DP mechanisms into VR [51] and eye-tracking
domains. DP mechanisms have been applied to different representa-
tions of gaze data, including saliency maps [43], eye images [34, 55],
features extracted from eye movements [11,63], and time series of gaze
positions [42]. DP serves as the main benchmark for our proposed
methods for gaze samples as DP is thus far the only formal guarantee
for gaze samples. DP mechanisms have an inevitable impact on data
utility [38], and identifying which applications are most affected or
where alternative guarantees are a better fit can inform future privacy
efforts for VR data. The goal of this work is to benchmark the privacy-
utility trade-off of novel mechanisms that achieve k-anonymity and
plausible deniability privacy guarantees for gaze samples applied to
activity recognition and gaze prediction.

To our knowledge, this work is the first to provide a privacy guarantee
alternative to DP for protecting eye-tracking sample datasets from re-
identification attacks. The contributions of our work include:

• Novel privacy mechanisms for achieving k-anonymity and plau-
sible deniability for generating synthetic eye-tracking sample
datasets.

• Evaluation of privacy-utility trade-offs between k-anonymity,
plausible deniability, and differential privacy when using eye-
tracking datasets to train activity recognition and gaze prediction
models.

In Section 2, we provide an overview of related work on privacy
and eye-tracking data. Next, in Section 3, we motivate the need for
privacy mechanisms by demonstrating re-identification attacks when
eye-tracking data are paired with identifiers such as age and gender in
public datasets. Then, Section 4 poses research questions, provides a
threat model, defines the considered privacy guarantees, and discusses
the implementation of the explored privacy mechanisms for sample data.
Section 5 presents privacy and utility results for the mechanisms applied
to two VR datasets (EHTask and DGaze). Last, Section 6 discusses
limitations, takeaways, and directions for future work.



Table 1: Privacy mechanisms for eye-tracking data with formal privacy guarantees. Shaded rows indicate our sample mechanisms.

Mechanism Guarantee Data type Input to mechanism Adaption to eye tracking
Gaussian [43] ε,δ -DP Saliency maps User fixation map Adapt DP noise mechanism [17] to protect fixation

counts over image pixels
Exponential-DP [63] ε-DP Statistical features Gaze features extracted

over window of time t
Adapt DP Noise mechanism [19] applied to features

independently
DCFPA [11] ε-DP Statistical features Gaze features extracted

over window of time t
Adapt Fourier DP mechanism [54] to include
difference and chunking of sliding windows

k-same-select
sequence [15]

k-anonymity Statistical features Gaze features extracted
over window of time t

Randomly group identities and apply
k-same-select [26] over sequence of features

Task-based
Marginals [15]

k,γ-PD Statistical features Gaze features extracted
over window of time t

Apply Marginals Generative Model and PD test [10]
to data from each task

Kalεido [42] ε,w,r-DP Gaze samples Window of w gaze po-
sitions, spatial bound r

Adapt spatial DP mechanism [3] to incorporate a
sequence [37] of gaze positions relative to ROIs

detected in viewed content
k-same-synth (ours) k-anonymity Gaze samples Gaze positions with

event labels
Apply k-same-select sequence to parameters of

models that generate event gaze positions
Event-synth-
PD (ours)

k,γ-PD Gaze samples Gaze positions with
event labels

Sample generative model for event gaze positions
and apply PD Event Privacy test

2 RELATED WORK

2.1 Privacy Guarantees for Eye-Tracking Data

Table 1 lists existing mechanisms that achieve formal privacy guaran-
tees for eye-tracking data, the type of data input to the mechanism, and
how the mechanism was adapted to eye tracking. The two most promi-
nent data types listed in Table 1 are statistical features and gaze samples.
Statistical features refer to statistics extracted during a fixed time win-
dow, such as the count of small, medium, or large amplitude saccades
or the average fixation duration [12]. Alternatively, statistical features
can be extracted from each individual fixation and saccade event, such
as dwell time. Event-based features measure characteristics such as the
maximum gaze velocity during a saccade or spatial dispersion during a
fixation [24]. Statistical features summarize eye movement behavior,
and are used for biometric identification of users [23] or classifying
sensitive attributes [11, 63].

DP is a popular privacy guarantee that can protect released data from
being used for identification or sensitive inferences. Specifically, DP
bounds how much the output distribution of data changes in the case
where any one feature vector in the dataset is omitted or included. DP
methods for eye-tracking datasets add noise and release data in the
same format as the input. The result of the DP guarantee means that
the variation across individuals is reduced. Thus, identifying individual
users or detecting sensitive traits becomes more difficult with privacy
noise that masks individual differences. The privacy noise needed for
DP also reduces the utility of the data by masking valuable insights.

Kalεido is the only existing mechanism for DP applied to sample
data. DP in the context of spatial data ensures a probabilistic bound on
how much output positions change within a spatial radius around the
original data. The algorithm runs in real-time and allows for streaming
samples with a DP guarantee; however, the context of the guarantee
does not provide a theoretical bound on re-identification. It has been
demonstrated that the amount of privacy noise added with kalεido re-
duces the risk of re-identification to chance for the 360_em dataset [42].
Yet, there is no analytical method to directly link the DP parameter ε

with the theoretical risk of use re-identification.
Related work for eye-tracking feature datasets had introduced mech-

anisms that achieve k-anonymity and plausible deniability [15]. Com-
pared to DP, both alternative guarantees retained higher utility for doc-
ument type recognition when re-identification rates dropped to chance.
The k-same-synth mechanism retained the highest classification accu-
racy while protecting privacy.

2.2 Alternative Privacy Guarantees

Many formal privacy guarantees exist to protect against different types
of privacy risks. We pursued k-anonymity and k,γ-plausible denia-
bility (PD) as alternatives to DP, as they directly protect against re-

identification attacks. First, we explored k-anonymity to provide intu-
itive protection in that individual data cannot be distinguished from k-1
others. The k-same [26] approach is common to achieve k-anonymity
for numerical data and works by averaging data together in groups of
size k and releasing duplicate values. The duplicate values have equal
contribution to the released data, establishing an upper bound of 1

k on
the probability of individuals being re-identified. k-same is typically
used to protect identity within facial images, as the numeric pixel values
can easily be averaged across individuals. However, depending on the
eye-tracking application, releasing duplicate data is not a satisfying
solution.

Limiting output data to k duplicates to achieve k-anonymity led us
to k,γ-PD, which extends a similar intuition applied to synthetically
generated data [9, 10]. PD retains the intuition of the k parameter in
terms of privacy for linking synthetic data to the real dataset. The γ

parameter is used to threshold the probability that k−1 real data inputs
could have generated the synthetic output before it can be released,
allowing control over the level of privacy for data synthesized by a gen-
erative model. PD has been applied in the domain of spatial-temporal
data in the form of location traces [9], motivating an application to
spatial-temporal gaze data. Synthetic location traces retained utility for
location-based services while protecting real individuals from being
re-identified and leaking the specific location of their home, doctor’s
office, or work locations.

Adaptions of existing mechanisms for k-anonymity and k,γ-
PD (Table 1) process feature data directly and allow for the protection of
datasets that only release eye-tracking features extracted from raw data.
The guarantees hold for the released feature data, as the only source
of identification are the released feature values. In contrast, datasets
of eye-tracking samples are difficult to protect against re-identification
with a formal guarantee. The feature set an attacker may use for identifi-
cation might not be known at the time of dataset release, preventing the
privacy mechanism from providing a robust guarantee against future
attacks. As described above, even the DP approach does not offer a di-
rect theoretical guarantee against re-identification. Data release would
require empirical analysis to determine which parameter values create
data that is safe for release against a given feature set and model. To
address limitations, we consider generative models that can synthesize
gaze positions during the most common eye-movement events, fixation
and saccades.

2.3 Synthesizing Gaze Data
Synthesizing eye-tracking data has been explored in the eye-tracking
community to drive saliency-based applications [46, 68], and for train-
ing deep network models [40]. Generative models of gaze data are
trained with the intention of deploying the model on new unseen inputs.
For example, a deep model that predicts a fixation scanpath can take



as input an image and predict the most relevant regions to optimize
during streaming. Deep synthesis models typically take the stimulus
as input and predict the eye movement behavior of a viewer, which is
considered synthetic data. In contrast, our proposed approach takes as
input eye movements at the event level, synthesizing gaze positions
during a saccade or fixation.

Past work modeling eye movements have developed simple [4,25,66]
and complex models [36, 39] for events. Models vary in the number of
parameters and whether they are based on heurisitics [6] or physical
simulation [36]. Models based on statistical distributions are amenable
to measuring the probabilities that relate individual samples with the
distribution. Modeling the probability that an individual produced a set
of samples for a particular event is key to preventing re-identification
from extracted features.

We considered applications that process eye movement events or
raw samples in our work. Such applications benefit from modeling eye-
tracking data at a low level when compared to the high-level prediction
models discussed above. For example, a real-time gaze model could
predict where the user will look 100 milliseconds in the future. This
task requires high utility of data within a short time scale, which is
achieved by modeling each event detected in a sequence of eye-tracking
data.

In the context of privacy, researchers have also turned to machine
learning to learn how to transform real eye-tracking data with an autoen-
coder model to balance privacy and utility. Fuhl et al. [22] deployed a
reinforcement learning model with privacy loss terms, optimizing the
released data to achieve high privacy and utility for known classification
models. The limitation of such an approach is the assumption that the
attacker will use a similar classification model. However, with rapid ad-
vancements in deep learning biometrics, this assumption may not hold
for the lifespan of the dataset [44]. Thus, formal privacy guarantees
are the preferred approach when considering large-scale datasets and
re-identification attacks.

3 ATTACK SCENARIO

A classic example of a re-identification attack is when the Governor
of Massachusetts’s medical prescriptions were leaked as a result of
releasing gender, date of birth, and zip code [64]. Based on this example,
consider a hypothetical dataset from a medical study that releases XR
data publicly. The released data is de-identified by removing names
and date of birth, but age and gender were retained along with eye-
tracking data. The study was required to implement k-anonymity of k
greater than or equal to four.1 A k-anonymity guarantee can easily be
achieved for the released age and gender data, however, if k-anonymity
is not also achieved for the released eye-tracking data, then the risk of
a successful re-identification attack is no longer bounded above by 1

k .
We demonstrate this risk with an example using the publicly available
ET-DK2 [16] and 360_em [1] datasets that have recently been explored
for re-identification [15].

In this scenario, it is assumed that the attacker can select the identities
that match the demographics of their target and then train and apply
a model to the subset of identities. For example, suppose only four
identities in the dataset have an age between 18 and 20 and identify as
Male. In that case, the attacker can train the model and predict which
of the four identities is the target.

prototype of a gaze-based re-identification attack is conducted by
combining the ET-DK2 and 360_em eye-tracking datasets with age
and gender demographics. Age, gender, and a eye-tracking biomet-
rics are all used for re-identification. The combined dataset in total
includes 24 identities. A standard method of data generalization is used
to achieve k-anonymity on age and gender labels by releasing ranges
of values instead of exact values (see the Supplementary Material for
the generalized k-anonymous groupings). Figure 1 demonstrates the
success rate of re-identification attacks with and without the k-same-
select sequence mechanism applied to the eye-tracking feature data [15].

1El Emam et al. [21] discussed k values for medical datasets, where k of
three is a minimum, k of five is typical, and a k as large as fifteen is rare.

Fig. 1: Success rate of re-identification attacks using age, gender, and
eye-tracking data. Bars with lines indicate results where age and gender
are k-anonymous, while solid bars indicate results when eye-tracking
data is also made k-anonymous. The orange dashed line plots 1

k , the
theoretical upper bound on re-identification.

A gaze-based biometric approach (see Sec. 4.5.1) was applied to per-
form the re-identification attack. Attack success remained above 80%
for all values of k when only the age and gender demographics were
k-anonymous. In contrast, attack success remained less than the the-
oretical 1

k bound when the eye-tracking data was also made to be
k-anonymous prior to release.

In this example attack, a public dataset does not meet the k-
anonymity privacy guarantee required by the research sponsor, im-
pacting the researchers and institution that released the dataset. Further-
more, the scenario puts participants’ privacy at risk, with successful
re-identification attacks allowing the attacker to identify medical condi-
tions or other sensitive information about victims.

4 METHODS

The most pragmatic approach to prevent re-identification from gaze
samples is through restricting access to raw data [16]. However, control-
ling access to raw data limits applications such as gaze prediction. We
evaluate privacy mechanisms that reduce risk of user re-identification
to explore the following questions,

RQ1: Can synthetic data with formal privacy guarantees mitigate
re-identification risk for datasets of gaze samples?

RQ2: How do mechanisms that achieve k-anonymity and plausible
deniability for gaze samples compare to a DP-based mechanism?

4.1 Threat Model

Assumptions for the considered re-identification attack include an at-
tacker who has a target identity that they want to identify within the
dataset. The attacker has read access to the public dataset. The attacker
has access to eye-tracking data from the target performing the same
task as the dataset. The attacker can then build a model trained on
the public dataset that predicts which identity most closely matches
the input data. If the prediction is correct, the target is successfully
re-identified.

In this work, we considered a threat model where a privacy mech-
anism has processed the public dataset while the testing data used to
re-identify individuals is unmodified. It is reasonable to assume that an
attacker could gain access to raw tracking data through unauthorized
code or by logging data streamed to third-party applications [65].

4.2 Privacy Definitions

This section defines three privacy definitions that can be applied to
re-identification attacks. First, we discuss k-anonymity as the seminal
definition of anonymity for a released dataset. Second, we present
the definition of plausible deniability, which leverages the intuition
of k-anonymity for synthetically generated data. Last, we provide the
definition of ε-differential privacy.



4.2.1 k-anonymity
k-anonymity is a seminal definition of privacy within a dataset proposed
by Samarati and Sweeney [58].

Definition 1 k-anonymity
Given a person-specific dataset D, a de-identified dataset D’ is k-

anonymized by privacy process P : D 7→ D′ if all released features
Γd = P(Γ) ∈ D′ cannot be recognized as Γ with probability > 1

k .

A dataset has k-anonymity if the above condition is true for all
unique combinations of feature values. There is no standard approach
for determining k across fields, as the optimal value of k depends on
the type of data and what probability of re-identification would make
an individual feel safe from attacks.

4.2.2 Plausible Deniability
Plausible deniability (PD) was first defined by Bindschaedler and Shokri
in the context of location traces [9] and later extended to general data
formats [10]. PD prevents re-identification by utilizing the generation
of synthetic data to achieve privacy. A synthetic dataset is released
that captures the original characteristics without leaking the identity of
those that contributed to the original dataset. PD provides a guarantee
that there are at least k individual records that could have plausibly
generated a synthetic data output.

PD has two privacy parameters: k, an integer greater than or equal
to one, and γ , a real number greater than or equal to one.

Definition 2 Plausible Deniability
For any dataset D where |D| ≥ k, and any record y generated by a

probabilistic generative model M such that y = M(d1) for di ∈ D, we
state that y is releasable with (k,γ)-plausible deniability if there exist at
least k−1 unique records d2, ...,dk ∈ D\{d1}, such that

γ
−1 ≤ Pr{y = M(di)}

Pr{y = M(d j)}
≤ γ

where k ≥ 1 is an integer and γ ≥ 1 is a real number.

Large values of k and values of γ that are closer to one imply higher
privacy. Privacy-preserving datasets are generated by only releasing
synthetic records y if they pass the PD privacy test:

1. Let i ≥ 0 be the only integer that fits the inequality γ−i−1 <
Pr{y = M(d)} ≤ γ−i

2. Let k′ be the count of records da ∈ D such that γ−i−1 < Pr{y =
M(da)} ≤ γ−i

3. If k′ ≥ k: return PASS, else return FAIL
Implementing the Privacy Test requires a method to compute proba-

bility values of the form Pr{y = M(di)} that represent the probability
that the mechanism M would generate the synthetic output y for a given
input. PD is intuitive against re-identification in terms of k, similar to
k-anonymity. Using synthetic data achieves privacy while retaining data
utility if the generated data captures the characteristics of the original
dataset.

4.2.3 Differential Privacy
DP is a theoretical definition of privacy that has quickly become a
standard in the privacy community [18]. First proposed by Dwork in
2006 [17], DP is popular as it provides a theoretical bound on the output
data distribution. The privacy guarantee applies even in the worst-case
scenario where all other entries from the original dataset have been
leaked. The privacy parameters for DP are defined to quantify how
much information an attacker gains when they access data released
by the privacy mechanism. An assumption on attacker knowledge
is unnecessary as the DP guarantee applies to any two datasets that
differ by at most one element. Formally, ε-differential privacy (ε-DP)
is defined as,

Definition 3 ε-DP
A mechanism M provides ε-DP if for all databases D,D′ that differ

in at most one element and for every O⊆ Range(M), we have

Pr[M(D) ∈ O]≤ eε ·Pr[M(D′) ∈ O]

ε-DP applies to the mechanism M, and not the database D or D′. A
guarantee on the mechanism ensures that the formal guarantee gener-
alizes to all possible datasets that vary by only one element. The eε

term bounds the probability that an attacker can detect a difference if a
given data element was or was not contained within the original dataset.
A major benefit of DP mechanisms is not requiring assumptions on
what information an attacker has. As a result, the privacy parameter
ε is easier to interpret across specific datasets and applications when
applied to the same data type.

4.3 Implementation
This section introduces two new privacy mechanisms for eye-tracking
sample datasets that achieve k-anonymity and PD through generative
models. First, we describe the generative models used to synthesize
gaze samples during fixation and saccade events. Second, we describe
the implementation of our proposed methods and the existing kalεido
mechanism. Please see the Supplementary Material for pseudocode
describing all three mechanisms.

4.3.1 Synthesis Models
Privacy for sample-level data is achieved by synthesizing new gaze
samples (Fig. 2). The approach to gaze synthesis is first to identify
fixation and saccade events and then replace gaze samples during the
events with synthetic data.

Fixations Fixations are low-velocity eye movements best de-
scribed as clusters of gaze positions around a fixation center. We
applied a simple model that fits an anisotropic 2D Normal distribu-
tion with parameters µx, µy, σx, and σy for each fixation cluster and
generated synthetic gaze samples by sampling from this distribution.

To determine the probability that a set of t gaze samples were sam-
pled from a given 2D Normal distribution,

Pr{y = {(x1,y1), · · · ,(xi,yi), · · ·(xt ,yt)}← N(µx,µy,σx,σy)}, (1)

we considered the joint probability that all of the points come from
the Normal distribution N(µx,µy,σx,σy). The joint probability for in-
dependently sampled points is computed as a product of probabilities
that each point came from the same distribution ∏

t
i=1 Pr{(xi,yi) =

N(µx,µy,σx,σy)}. Gaze positions in this context are considered a con-
tinuous random variable defined by N(µx,µy,σx,σy). We computed
the individual probabilities by considering the cumulative distribu-
tion function (CDF) for the Normal distribution. The CDF returns
probabilities that the random variable falls within a range of values
a and b in the form Pr{(ax,ay) < N(µx,µy,σx,σy) ≤ (bx,by)}. We
approximated Pr{(xi,yi) = N(µx,µy,σx,σy)} as Pr{(xi−∂ ,yi−∂ )<
N(µx,µy,σx,σy)≤ (xi +∂ ,yi +∂ )}, where ∂ = .01 represents a suffi-
ciently small region around the gaze position to consider. Estimating the
probability from the CDF between (xi−∂ ,yi−∂ ) and (xi +∂ ,yi +∂ )
provides the probability that a value near (xi,yi) comes from the dis-
tribution N(µx,µy,σx,σy). The probability is used to compute the Pr
term in EQ. 1, thus allowing the PD Privacy Test to be applied at the
fixation level.

Saccades A three parameter Gaussian function is fit to the pro-
file of instantaneous saccade velocities computed from the raw gaze
samples [25, 66]. The velocities vi for each gaze sample (xi,yi) are
computed as d((xi−1,yi−1),(xi,yi)) where d is the shortest angular dis-
tance between two points on a sphere of uniform radius computed with
the haversine formula [57]. The Gaussian function used to model the

velocity profile of a saccade is defined as G(a,b,c, t) = a ∗ e−
(t−b)

c

2

,
where a, b, and c control the shape of the velocity profile and t ∈ [0,1]
represents normalized saccade duration. Raw velocity values are re-
sampled uniformly to a fixed number of values from saccade start to
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Fig. 2: Synthetic gaze data (orange circles) for fixations and saccades.
Left: Samples from a fixation modeled using a 2D Normal distribu-
tion. Center: Saccade velocity profile modeled using a three-parameter
Gaussian model. Right: The velocity profile is integrated to generate
displacements between consecutive points, producing synthetic posi-
tions between the starting and landing point of the saccade.

end point. We fixed the number of samples to 30 for all saccade profiles.
The parameters a, b, and c for each saccade are determined by apply-
ing the scipy.optimize.least_squares function to minimize the sum of
squared errors for each saccade profile, ∑

30
i=1(vi−G(a,b,c, ti))2, where

ti = (i−1) · 1
29 .

Probabilities that an individual produced a synthetic saccade profile
is required to implement the PD test. The saccade velocity values for
each uniform time step i of the real dataset are used to define probability
mass functions by mapping continuous values to discrete bins. Fifty
bins discretized the velocity values at each time step. The bins uni-
formly covered a range of velocity values between 0 and 1000 degrees
per second. A histogram for each individual counted the number of
velocity values that fell into each bin at each time step. The counts are
divided by the total number of saccades from each individual, so the
sum of all probabilities are equal to one. The resulting values provide a
joint probability distribution over the likelihood of producing a specific
velocity value at each time step. The probabilities across time points
are summed to compute the likelihood that an individual generated a
synthetic saccade profile.

Synthetic saccade positions are generated from a velocity profile
by computing the displacement between each sample in the event.
The displacement represents the amplitude A at each time step. The
amplitudes are used to generate synthetic gaze positions iteratively as
(xi+1,yi+1) = (xi,yi)+A ·T , where T is a normalized vector from the
saccade start point to the original landing point (Figure 2, Right).

Conditional Variational Autoencoder To achieve PD for sac-
cades a randomized generative model is needed. The generated syn-
thetic data must capture the characteristics of the original data without
being traced to identity. Sampling saccades is more complex than
fixations, which used a tractable 2D Normal distribution. The sac-
cade profiles are represented as a discrete set of 50 velocities from
saccade start to finish. Saccade direction, amplitude, duration, and
individual differences affect the shape of velocity profiles, creating a
multi-dimensional probability distribution. Randomly sampling the
three-parameter Gaussian equation used for fitting profiles above can-
not capture differences in distributions across all of these factors, and
thus a deeper generative approach is necessary.

A conditional variational autoencoder (C-VAE) is a deep model that
synthesizes data from distributions with user-specified conditions [62].
We explored C-VAEs as they learn from large datasets and accurately
reconstruct velocity profiles given amplitude, duration, and identity
labels. Prior models for PD, such as Marginals [10, 15], are limited in
retaining utility as the conditions that determine the probability distri-
butions are not used as inputs. The C-VAE model is randomized and
generates a different profile each time, which is ideal for the iterative
generating and testing of synthetic data for PD.

4.3.2 k-same-synth
Gaze samples from each detected fixation and saccade event are used
to fit model parameters for each event in the dataset. The k-same-select
sequence mechanism [15] is applied directly to the model parameters.

Events are processed sequentially in the order in which they occurred.
The k-anonymous model parameters are then used to sample synthetic
data points for fixations and saccades.

For fixations, the µx, µy, σx, and σy parameters are processed by the
mechanism to modify the centroid position of the fixation using other
individuals’ data and varying the spatial spread of the samples. The
absolute position of the fixation within the stimulus could be shifted to
a different region as a result of averaging. For saccades, the parameters
of a Gaussian function model are averaged and used to construct a
k-anonymous velocity profile.

4.3.3 event-synth-PD
Plausible deniability is achieved for samples by generating synthetic
gaze positions for fixation and saccade events. The feature vector
extracted from the events must pass the privacy criterion (Definition 2)
before being released. For fixations, gaze samples are generated by
randomly sampling the Gaussian distribution defined by µ , σx, and
σy parameters until the privacy criteria are met. For saccades, gaze
samples are generated by synthesizing new velocity profiles with the
C-VAE model until the criteria are met.

We defined our own PD Event Privacy Test that determines if a
synthetic fixation or saccade is k,γ-PD as an alternative to the original
privacy test defined in Sec. 4.2.2. For each synthetic event, the mod-
ified privacy test loops over event parameters from other individuals.
After identifying an event that passes the test for an individual, k′ is
incremented and the loop moves on to the next individual. The last step
returns pass or fail based on whether k′ ≥ k−1. The key difference in
our modified implementation is a for loop that skips to the next individ-
ual once the test has passed. The modification guarantees that instead
of at least k− 1 other data points plausibly generating the synthetic,
k−1 individuals could have plausibly generated the released synthetic.
Please see the Supplementary Material for pseudocode of the modified
privacy test.

The difference in the guarantee achieved by the PD and PD Event
privacy tests is that the k parameter refers to either data records or
individuals, respectively. The original PD Privacy Test counts k′ based
on the number of events that satisfy the PD criterion and could provide
a passing result, even though all of the records that incremented k′ were
from the same individual. For Event PD, k′ is only incremented once
per individual.

C-VAE Architecture
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Fig. 3: C-VAE model used to generate saccade velocity profiles.

The deployed C-VAE model for saccades is used to output syn-
thetic velocity profiles. The decoder network D of the C-VAE takes a
randomly sampled noise vector z along with the conditions of a real
saccade event, i.e., the saccade amplitude, duration, and individual
identity as input, and outputs a corresponding synthetic profile. The
synthetic profile captures the characteristics of the original saccade
to preserve utility while also introducing random variability that will
allow the extracted feature vector to pass the privacy criterion.

As shown in Figure 3, the C-VAE inputs are a velocity profile x
of 30 samples concatenated with conditions c that characterize the
saccade. The encoder E consists of a fully connected (FC) layer with 32



nodes and a ReLU activation layer. The encoder outputs 64 parameters
defining a latent space of Normal distributions µ and σ . The Normal
distributions are then sampled independently using inverse transform
sampling to produce a noise vector z with 32 elements. The decoder
D(z) is a one-layer FC network with 96 nodes and a linear activation
layer that takes the noise vector concatenated with c, and outputs the
synthetic profile. See the Supplementary Material for details on model
training and optimization of parameters.

4.3.4 Kalε ido
The kalε ido mechanism is a composition of multiple DP definitions for
processing streams of gaze samples in a real-time manner [42]. The
original algorithm processed gaze samples as 2D pixel locations, while
our evaluation considered 3D gaze directions. The 3D gaze directions
are represented as horizontal and vertical gaze angles mapped on a unit
3D sphere.

Formally, the privacy guarantee of kalεido is defined as,

Definition 4 (ε ,w,r)-DP for gaze stream prefixes
A mechanism M : Sg → Cg where Sg is the domain of all stream

prefixes, satisfies (ε ,w,r)-DP if for all pairs (w,r)-neighboring gaze
stream prefixes {Sg

t ,S
g′
t } ∈ Sg×Sg, we have

∀O ∈Cg,∀t,Pr[M(Sg
t ) = O]≤ eε ·Pr[M(Sg′

t ) = O],

where Sg
t and Sg

t are neighboring sequences of w gaze positions prior
to timestamp t, and Cg is the output set of private gaze positions.

The kalε ido mechanism relies on splitting the ε DP parameter into a
testing budget εtest and a publishing budget ε pub. The testing budget
generates random noise that is added to a spatial threshold lthresh. The
threshold lthresh plus noise acts as a fixation detector by determining
if the current gaze position is close enough to the previous position to
skip publishing the new position. If the distance between gaze positions
is less than the threshold, then the previous gaze position is repeated in
the stream.

The publishing budget determines the scale of spatial noise added
to released gaze samples. The parameter h defines the ratio of testing
budget to publishing budget, providing a trade-off between skipping
samples more randomly and adding more spatial noise. Li et al. [42]
determined lthresh and h empirically and scaled them based on values of
r. We set the minimum number of samples to skip tskip before testing
as five, lthresh to one degree, and h to two in our analysis. Note that
modifying parameters for the adaptive budget algorithm does not impact
DP privacy, as ε does not change, but impacts utility by determining
how often gaze positions are repeated.

Li et al. [42] evaluated window sizes of half a second and two
seconds, and proposed a novel approach for setting the spatial bound
parameter r based on ROIs within the stimulus content. We reproduced
their window sizes for 100Hz eye-tracking data in our evaluation by
setting w to 50 and 200 samples, respectively. For a fair comparison
with k-same-synth and event-synth-PD, which do not consider stimulus
content, we fixed the value of r as either the typical spatial dispersion of
a fixation or the amplitude of a saccade during free viewing. Fixations
are typically contained within two degrees, and the median saccade
amplitude for EHTask was ten degrees during the viewing task [30].

4.4 Datasets
We evaluated the above-detailed sample privacy mechanisms on pub-
licly available VR datasets for activity recognition and gaze prediction.
The EHTask [30] dataset includes VR gaze data at 100Hz from 30
participants viewing three 360◦ videos. Participants viewed each video
four times, performing different activities: free viewing, visual search,
saliency, and tracking. A deep network was trained to classify windows
of gaze and head data into the four activity classes.

The DGaze [31] dataset included VR gaze data collected at 100Hz
from 43 participants that explored two 3D rendered scenes. DGaze
processed saliency of scene content, tracked objects, and current gaze
position to predict a future gaze position. Gaze prediction has been
demonstrated in the context of foveated rendering and can help account
for latency in the rendering pipeline [4, 31, 53].

4.5 Metrics
Privacy and utility metrics were computed for each dataset to determine
the trade-off between the ability to re-identify users and the application
of training machine-learning models.

4.5.1 Identification Rate
We computed identification rates on two trained classifiers using a
Radial Basis Function network (RBFN) [15, 24, 59], with one network
to classify fixation features and the other to classify saccade features.
Identification rate was computed identically to related work [15]. Train-
ing and testing sets were randomly selected from unique stimuli within
the dataset. Splits for training and testing were 75/25 for EHTask and
50/50 for DGaze [15]. For evaluation, one classification was made
for each individual in the dataset. First, identification probabilities
were computed from all of the testing data. The classification scores
were then averaged within both fixation and saccade features. A final
classification was made with a weighted average between the fixation
and saccade scores. A weight of 0.4 was applied for fixation scores
and a weight of 0.6 for saccade scores, as saccade features performed
best for re-identification [15]. Identification rate was the percentage of
individuals that were correctly classified with the largest class score.
The reported identification rates are averaged over 20 runs of randomly
selected train/test sets.

4.5.2 Activity Classification Accuracy
The EHTask classification model computes features from 1D convolu-
tional layers applied to sequences of eye-in-head, head-in-world, and
gaze-in-world samples. The output features are then fed into bidirec-
tional GRU layers that are concatenated as input to a fully-connected
network for final classification. The classification model considers data
from the past ten seconds to make a prediction. Utility for EHTask
was based on classifying each window of samples as the correctly.
Performance was computed as accuracy T P+T N

T P+FP+T N+FN . Results were
computed with 25% of the data from each task as test data by segment-
ing users into the train and test sets from the original paper [30]. The
chance rate of guessing for EHTask is equal to 25% as there are four
possible activities.

4.5.3 Gaze Prediction Accuracy
The DGaze prediction model takes eye, head, and virtual object move-
ments as inputs processed by a 1D convolutional network combined
with saliency predictions on visual content within the user’s field of
view. Input time windows of the past 500ms were used to train the
model for predicting gaze position 100ms in the future. Utility for
DGaze was measured as the angular distance between the predicted
gaze position and the ground-truth future gaze position. Prediction
accuracy was computed with a 60/40 train/test split from the original
paper [31].

5 RESULTS

5.1 Runtime Analysis
Privacy mechanisms were implemented in Python and processed
CSV files containing raw gaze positions and labels of detected fix-
ation/saccade events. Code was executed on a 64-bit Windows desktop
with an Intel i7-6800k CPU and 16Gb of RAM. Implementation of
the C-VAE models used TensorFlow (v1.13.1) with an Nvidia 1070
GPU. Reported runtimes do not measure the data pre-processing steps
of importing eye-tracking data into a standard format, computing gaze
velocity, removing outlier velocities, and classifying fixation or saccade
events.

Table 2 presents the longest runtime across parameters for each mech-
anism applied to each dataset. The k-same-synth and kalε ido runtimes
were efficient as they processed both datasets in about two minutes or
less. However, event-synth-PD took longer due to the requirement of
training the C-VAE model and generating probability mass functions
for saccades from the input dataset. Generating a synthetic eye-tracking
dataset is feasible on a large scale for all mechanisms as the runtimes
ranged between 2 and 15 minutes.



Table 2: Runtime analysis for each privacy mechanism and dataset.

Dataset # Ppts. Dur. Mechanism Runtime
EHTask 30 15 hrs k-same-synth 2.2 mins
EHTask 30 15 hrs event-synth-PD 14.8 mins
EHTask 30 15 hrs kalεido 5.2 mins
DGaze 43 5 hrs k-same-synth 52 secs
DGaze 43 5 hrs event-synth-PD 4.0 mins
DGaze 43 5 hrs kalεido 1.8 mins

Table 3: Re-identification results for the EHTask dataset. For k-same-
synth, re-identification rates dropped as low as 7.5% for the largest
value of k. Results from event-synth-PD dropped to 9.2% for smaller
values of γ and larger values of k. Kalεido reduced rates the most,
achieving a 4% rate, which is nearly equal to chance (1/30 = 3%).

Params RBFN identification rate % (↓)
No mechanism 28.0%
k-same-synth
k = 2 9.7%
k = 4 8.7%
k = 6 8.5%
k = 8 7.5%
event-synth-PD γ = 1.0 γ = 1.5 γ = 2.0 γ = 3.0
k = 2 12.5% 13.5% 11.7% 13.8%
k = 4 9.2% 12.2% 15.0% 14.2%
kalεido w = 50

r = 2◦
w = 50
r = 10◦

w = 200
r = 2◦

w = 200
r = 10◦

ε = 10 10.2% 5.7% 8.0% 6.7%
ε = 5 7.3% 4.0% 6.0% 7.2%
ε = 2 7.7% 10.5% 9.0% 10.3%
ε = 1 7.8% 9.3% 8.3% 6.0%

5.2 Activity Classification

Metric results for EHTask are provided in Figure 4. Visual results
for each mechanism applied to EHTask can be seen in Figures 5, 6,
and 7. Table 3 provides re-identification rates for several values of
k. The mechanism produced re-identification rates in the range of
7.5% to 9.7%, lower than 28.0% from unmodified data. The lowest
re-identification rate was 7.5% at k equals eight, which is higher than
chance (1/30 = 3.3%). Rates above chance result from synthetic data
affecting values of the biometric features extracted from event data. For
example, the fixation features include the duration of fixations and the
spatial dispersion within a fixation. The fixation synthesis method we
deployed does not directly modify fixation duration, but does modify
the spatial distribution that influences dispersion. Thus, any identifying
trend influenced by temporal features are not guaranteed to be removed
by k-same-synth.

The k-anonymous dataset was used to train an activity classifica-
tion model for utility. k-anonymity introduced a loss in the activity
classification utility, dropping the accuracy from 82.8% on unmodified
data to as low as 29.1% (Fig. 4). A large drop in classification accuracy
impacts interfaces or models that depend on recognizing the user’s
activity. Reasonable classification accuracy of 61.8% was achieved at k
equals two, but quickly falls off and reaches chance rates at k equals
eight (29.1%).

The event-synth-PD mechanism guarantees that fixation positions
and the generated saccade velocity profiles are k,γ-PD. Figure 6 shows
the event-synth-PD mechanism and the effect of privacy parameters k
and γ on the output gaze sample positions. Synthetic horizontal and
vertical gaze positions are largely unaffected for both values k, and all
values of γ .

The kalε ido mechanism repeats gaze positions at high privacy levels,
as the algorithm skips samples more frequently for low values of ε .
Repeating gaze samples modifies the training dataset to contain less
information about eye movements and prioritizes model optimization
around the head movement data, which remains sampled at 100Hz. We

Fig. 4: Classification rates presented a downward trend for k-same-
synth across values of k with rates starting near 60% and dropping
to 29% with more privacy. Results from event-synth-PD presented a
uniform trend near 72% for all values of k and γ . Results from kalε ido
ranged from 42% to 76%; with an accuracy of 69% for parameters that
achieved strong DP privacy (r = 10◦, w = 200, ε = 1).

Table 4: Re-identification results for the DGaze dataset. Identification
rates are equal to chance (1/43 = 2.3%) for unmodified data, and was
lowest for k-same-synth at k = 8.

Params RBFN identification rate % (↓)
No mechanism 2.3%
k-same-synth
k = 2 2.0%
k = 4 2.3%
k = 6 2.1%
k = 8 1.1%
event-synth-PD γ = 1.0 γ = 1.5 γ = 2.0 γ = 3.0
k = 2 1.2% 1.3% 1.9% 1.5%
k = 4 1.3% 1.2% 1.5% 1.5%
kalεido w = 50

r = 2◦
w = 50
r = 10◦

w = 200
r = 2◦

w = 200
r = 10◦

ε = 10 2.3% 2.3% 2.3% 2.8%
ε = 5 2.3% 2.8% 2.1% 3.0%
ε = 2 1.5% 2.1% 1.9% 2.3%
ε = 1 2.6% 2.3% 4.6% 2.1%

hypothesize that the learned EHTask model classifies activity based
on the sparse gaze samples and head movements relative to them,
achieving comparable utility at both ε = 10 and ε = 1.

5.3 Gaze Prediction
Figure 8 presents results from each privacy mechanism (smaller values
indicate better utility). Visual results for each mechanism applied to
the DGaze prediction task can be seen in Figure 9. Table 4 provides re-
identification rates for each mechanism. The DGaze dataset produced
identification rates at chance with no mechanism applied. Evaluations
in related work hypothesized that the low identification rates for DGaze
were due to viewers only exploring two scenes in total. Viewers saw
sparse environments and were instructed to follow animals moving
within the scene [16]. The combination of a prescribed task and low
diversity in stimuli results in features that are not reliable for user iden-
tification. This claim is supported by related work that demonstrated
identification rates for free viewing were 60% higher than that of guided
training sessions [41].

The k-anonymous dataset decreased utility, increasing the prediction
error from 4.3◦ to 6.5◦. Introducing 2.2◦ of error has a small impact
on gaze prediction applications, such as foveated rendering. However,
it can be compensated for with a larger foveal region parameter. For
example, perceptual experiments by Guenter et al. [27] on traditional
displays have found an optimal size for the foveal region between three
to four visual degrees. Increasing the foveal region within this range
by 2.2◦ to accommodate additional error would reduce the rendering
speedup from a factor of ten to four.



Table 5: Summary of privacy-utility trade-offs with check marks indicating a practical trade-off for that application.

Mechanism Guarantee Data type Utility Practical trade-off
k-same-select sequence [15] k-anonymity Features Document Type Classification ✓
Marginals [15] k,γ-PD Features Document Type Classification ×
Exponential-DP [63] ε-DP Features Document Type Classification ×
k-same-synth (ours) k-anonymity Samples Activity Type Classification ×
event-synth-PD (ours) k,γ-PD Samples Activity Type Classification ✓
Kalεido [42] ε-DP Samples Activity Type Classification ✓
k-same-synth (ours) k-anonymity Samples Prediction ✓
event-synth-PD (ours) k,γ-PD Samples Prediction ×
Kalεido [42] ε-DP Samples Prediction ×

Fig. 5: Real and synthetic gaze positions for the k-same-synth mech-
anism from EHTask. Left Column: Horizontal position time series.
Middle Column: Vertical position time series. Right Column: 2D
Gaze positions in equirectangular format. Large shifts in the synthetic
horizontal positions are observed as early as k equals two.

The k,γ-PD dataset introduced a moderate loss in utility, increasing
the prediction error from the 4.3◦ baseline up to 9.1◦ across parameters.
The introduced error is almost double that of the unmodified data,
introducing more errors than k-same-synth.

Figure 9 shows high spatial displacement from the actual gaze posi-
tion for the kalεido mechanism. Kalεido introduced the most error of
all mechanisms at high DP privacy, but introduced reasonable errors
of 5.6◦ or less for the smallest values of r and w. Figure 8 demon-
strates a linear trend for increased prediction error within each set of
DP parameters as ε decreases (higher privacy).

6 CONCLUSION

We presented privacy mechanisms that achieved alternative privacy
guarantees to DP for eye-tracking sample data to explore RQ1 and miti-
gate re-identification from gaze datasets. The presented mechanisms
reduce the risk of re-identification, though not all mechanisms reduced
rates to chance.

Table 5 addresses RQ2 by providing recommendations for mech-
anisms that achieved practical privacy-utility trade-offs for different
applications. For feature datasets used for classification tasks, past liter-
ature has recommended a mechanism that achieved k-anonymity [15].
For sample datasets used on classification models, we demonstrated
practical trade-offs for both event-synth-PD and kalεido. However,
between these two mechanisms kalεido achieved the best trade-off

Fig. 6: Real and synthetic gaze positions for the event-synth-PD mech-
anism from EHTask. Synthetic positions are consistent across privacy
parameters and do not vary significantly from the original data.

by sparsely sampling the gaze sample positions. The EHTask model
we evaluated also takes head movements as input, and retained utility
by relying less on gaze data. Visually, the gaze samples produced
by event-synth-PD resembled real data much more closely (Figures 6
and 7), and would generalize better to utilities that only rely on gaze
data. For sample datasets used in gaze prediction, a practical trade-off
that limits introduced gaze prediction error was only achieved for the
k-same-synth mechanism. In comparison to DP data from kalε ido, both
privacy alternatives found practical application in one of the two tasks,
and provide parameters that are simple to interpret by dataset owners.

Our proposed mechanisms protect against re-identification and are
evaluated against DP, as it is considered state-of-the-art for user privacy
in eye-tracking sample data. However, DP provides a guarantee that
extends beyond only re-identification, also providing formal protection
against sensitive inferences related to gender or age [63]. Our recom-
mendation for which mechanism to deploy depends on the context
and goal of the dataset owner, and the implications of a DP privacy
trade-off are broader than the computed re-identification rates. If DP is
necessary, we found a clear trend showing that higher privacy (small ε)
resulted in worse performance in gaze prediction, while a clear trend
was not present in activity recognition. Such a result suggests that the
robust guarantee of kalεido-DP can provide a favorable trade-off for
one application, but not for others. If the scope of risks for a dataset
are only focused on re-identification, then we recommend the viable
alternatives of k-anonymity and PD for gaze predication and activity
recognition, respectively.

6.1 Limitations
Our identification results were limited to an RBFN model, although
related work explored random forest [59], SVM [49], k-NNs [11] and
deep network [44] models. However, the specific model does not
affect formal guarantees. Our analysis was limited to the utility model



Fig. 7: Real and synthetic gaze positions for the kalεido mechanism
from EHTask. Higher levels of privacy increase spatial noise in the
data and reduce temporal resolution, producing a sparse distribution of
spread out gaze positions.

Fig. 8: Gaze prediction errors from k-same-synth increased from 5.4◦
to 6.5◦ across k, indicating a slight linear trend. Gaze errors from
event-synth-PD ranged between 6.8◦ and 9.1◦ across k and γ . Gaze
errors for kalε ido presented an increasing linear trend within values of
r and w as ε went from low (10) to high privacy (1).

parameters reported to be optimal by the original authors. Using these
parameters provided a benchmark relative to unmodified data, however,
de-identified data with tweaked model parameters could result in higher
utility. It would be interesting to explore trends in utility for each
privacy mechanism across different hyper-parameters as well.

A fundamental limitation of privacy parameter k is the assumption
that each stimulus or task has data from at least k individuals. Our
results considered a classification task that included four target classes.
Datasets with a larger number of classes are more difficult to classify
accurately and may impact the generalization of our takeaways.

6.2 Applicability of methods to the field of VR
The presented privacy mechanisms generalize to mitigate re- identi-
fication attacks on time series data. Time series data, including eye
tracking, are critical to many VR applications. Our approach to privacy-
utility analysis provides a framework for exploring the protection of
sensor data against re-identification attacks while still retaining utility
specific to key VR applications. Relevant sensors include motion data
from the head and hands of VR users, which has previously been used
for accurate user identification while also being the default form of
input for most VR systems [49,50]. The presented privacy mechanisms
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Fig. 9: Gaze predictions from DGaze trained on unmodified and private
data. Colored stars indicate predictions from DGaze trained for each
privacy mechanism and unmodified data. The blue dot indicates the
gaze position at the time of prediction, with an arrow drawn to the
actual gaze position 100ms into the future (orange circle).

for eye tracking can easily be applied to VR movement data, as they
both represent 3D positional data over time.

The mechanisms can also be adapted to alternative time series data
that will be integrated into VR systems, such as speech during remote
collaboration, heart rate for stress detection, or brain activity for emo-
tion recognition [8], by considering what features or representative
events could be extracted from those signals. For example, with heart
rate the RR interval time is a standard method for stress detection and
biometric authentication [35] and provides a basis for synthesizing non-
identifying data that retains utility. Once the appropriate features are
identified, our proposed methods can be adapted to model bio-physical
events similar to how fixations and saccades were modeled from eye
movements in our work.

Privacy-preserving datasets are an important topic to explore within
the VR community. As more sensors become available in the future,
the ability and motivation for researchers to collect experimental data
and release them publicly will also increase. While re-identification
attacks on VR datasets have not yet been publicized. The research
community has a unique opportunity to establish an understanding of
defense methods before the risk becomes a critical issue in the field.

6.3 Future Work

Clear next steps include evaluating privacy mechanisms that consider
additional sample-based VR utilities (streaming optimization [14] &
adaptive interfaces [2]), alternative generative models (graph-based [10]
& GANs [46]), and metric-learning biometrics [44]. The threat to pri-
vacy we considered was identifying the user from their eye-tracking
data only. Attention data paired with content has the potential to violate
privacy expectations concerning personalized ads, revealing biases, and
identifying sexual orientation [48]. Inferences of this nature are known
as biometric pyschography and indicate the emotional state or inten-
tion of a user [29]. Even de-identified data could leak mental health
conditions [5] or neuro-atypicality such as autism [13]. Current privacy
solutions have only explored the additional threat of gender classifica-
tion with DP methods [11,22,63]. There is still a gap between the large
body of work on using eye movements for sensitive characterizations in
ideal lab conditions [28, 61] and how frequently scenarios that produce
these risks would arise in everyday use of XR.
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