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Abstract—Semiconductor intellectual property (IP) theft incurs
hundreds of billions in annual losses, driven by advanced reverse
engineering (RE) techniques. Traditional “cryptic” IC camouflag-
ing methods typically focus on hiding localized gate functionality
but remain vulnerable to system-level structural analysis. This
paper explores “mimetic deception,” where a functional IP (F')
is designed to structurally and visually masquerade as a com-
pletely different appearance IP (A). We provide a comprehensive
evaluation of three deceptive methodologies: IP Camouflage,
Graph Matching, and DNAS-NAND Gate Array, analyzing their
resilience against GNN-based node classification, and Differential
Power Analysis (DPA). Crucially, we demonstrate that mimetic
deception achieves a novel anti-side-channel defense: by forcing
the mis-classification of cryptographic primitives, the adversary
is led to apply an incorrect power model, causing the DPA attack
to fail. Our results validate that this multi-layered approach
effectively thwarts the entire RE toolchain by poisoning the
structural and logical data used for netlist understanding.

Keywords—Reverse Engineering, IC Camouflage, Cyber De-
ception, Machine Learning, Hardware Security

I. INTRODUCTION

The integrity of modern electronic hardware is increasingly
threatened by physically invasive reverse engineering (RE).
By systematically delayering and imaging integrated circuits
(ICs), attackers can reconstruct gate-level netlists to extract
sensitive intellectual property (IP), identify security vulner-
abilities, or facilitate illegal cloning. This poses catastrophic
risks to critical domains, including defense and finance, where
the exposure of underlying algorithms can undermine national
and economic security [[1]], [2].

IC camouflaging has emerged as a key defense, utilizing
fabrication-level secrets, such as dummy contacts [3]], thresh-
old voltage [4] or technology [5]], to make different logic gates
appear identical under Scanning Electron Microscope (SEM)
imaging. However, existing methods often focus on localized
gate modifications and fail to achieve broader system-level
deception. This narrow focus allows advanced Al-enhanced
RE tools and SAT solvers to eventually de-obfuscate the
design.

This paper evaluates a holistic methodology known as
mimetic deception [6], [7], which integrates cryptic and
mimetic principles to ensure a circuit not only hides its true
function but also presents a realistic yet misleading outward
appearance. We evaluate three primary methods:

o IP Camouflage: An ML-driven approach utilizing an
And-Inverter Graph Variational Autoencoder (AIG-VAE)
to blend the functionality of a circuit with a deceptive
appearance.

o Graph Matching: A layer-by-layer greedy heuristic that
operates on standard logic gates to map a functional
netlist onto a decoy topology while maintaining formal
equivalence

« DNAS-NAND Gate Array: A scalable synthesis model
using Differentiable Neural Architecture Search (DNAS)
to generate end-to-end deceptive circuits within a single-
stage flow.

Beyond traditional metrics of SAT resilience and PPA
overhead, this work focuses on a unique defensive vector: side-
channel misclassification. We analyze how mimetic deception
can disguise cryptographic primitives to cause the failure of
Differential Power Analysis (DPA). By making one cipher
(e.g., PRESENT) appear as another (e.g., AES or DES), the
attacker is misled into using an incompatible hypothetical
power model. Since the success of DPA relies on the precise
correlation between the power trace and the specific logic of
the algorithm, this functional misclassification prevents the
adversary from ever reaching the true secret key.

II. BACKGROUND
A. IC Camouflaging and Covert Gates

IC camouflaging techniques traditionally fall into two
categories: gate-level and interconnect-level [5]. Gate-level
methods replace standard cells with variants that implement
different functions based on fabrication secrets like dummy
contacts [3[] or threshold voltage variations [§]]. Interconnect
camouflaging [9] obscures signal paths by manipulating inter-
nal wiring.

The current state-of-the-art is the covert gate method-
ology [5[]. Covert gates exploit always-on and always-off
transistors to realize multiple gate functionalities within a
single physical footprint. Because these transistor states are
created through doping and remain indistinguishable under
SEM imaging, covert gates appear identical to standard CMOS
cells. This work utilizes specialized variants: Fake Inverters
(FI), Fake Buffers (FB), and Universal Transmitters (UT), im-
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Fig. 1. Overview of a Differential Power Analysis (DPA) attack workflow targeting a cryptographic S-Box with a peak for correct key guess.

plementing function-appearance mismatches that thwart both
visual inspection and SAT-based logical attacks [6].

B. IC Reverse Engineering and Netlist Understanding

Physically invasive reverse engineering (RE) is a destructive
process where an attacker systematically dissects an IC to
uncover its complete netlist [[1O], [11]. The typical workflow
begins with decapsulation to expose the silicon die, followed
by iterative deprocessing. During this phase, each metal and
dielectric layer is removed through mechanical polishing or
automated ion beam milling [[12]. High-resolution SEM imag-
ing is then used to capture the layout, which is subsequently
analyzed to extract a gate-level netlist [[11].

Once extracted, netlist understanding tools are employed
to abstract high-level functions from the flattened “sea of
gates” [13]]. Algorithmic approaches identify recurring struc-
tures or infer control logic through Boolean reasoning [14],
[15]. More recently, machine learning-based tools such as
GNN-RE [16]] and FGNN2 [17] interpret circuits as graphs
to classify gate functions and functional boundaries. Mimetic
deception aims to poison the structural data these tools rely
on, forcing them to produce misleading architectural labels.

C. DPA Attack on Ciphers

Differential Power Analysis (DPA) is a statistical side-
channel attack that exploits the correlation between a device’s
instantaneous power consumption and the intermediate data
values it processes [18]]. Unlike Simple Power Analysis (SPA),
which relies on visual inspection, DPA utilizes large datasets
to extract secret keys even amidst significant noise [[19].

The attack is predicated on a power leakage model, typically
the Hamming Weight (HW) or Hamming Distance (HD)
model. As detailed by Prouff [[19], the power consumption
C(X) of a device processing data X is modeled as propor-
tional to the number of bit transitions (HD) or the number
of set bits (HW). In block ciphers like AES or DES, the
Substitution Box (S-Box) is the primary target due to its
non-linearity, which relates plaintext, key, and ciphertext in
a complex but deterministic manner.

To perform a DPA attack, an adversary defines a selection
function D(X, K, j), which predicts the value of the j-th

bit of a specific intermediate state (e.g., the S-Box output)
given a plaintext X and a hypothetical key K. The adversary
then computes the differential trace Ay by partitioning the
measured power traces into two sets based on whether D
predicts a 0 or a 1, and calculating the difference of their
means:

_ SN, DX, K, j)C(X)
Zfil D(Xla Ka])
2N, (- DX, K, §))C(X)
>N (1 D(Xi, K, 5))

where N is the number of traces and C(X;) is the measured
power consumption for the i-th input.

When the hypothetical key K matches the actual secret
key, the selection function D accurately classifies the power
traces, resulting in a statistically significant peak in A at the
time instant the intermediate value is processed — see Fig. [I}
Conversely, incorrect key hypotheses result in uncorrelated
groupings, where the difference of means tends toward zero.
However, as noted in [19]], incorrect keys can sometimes
produce “ghost peaks” due to residual correlations, though
these are typically distinguishable from the correct key signal
with sufficient data.

Crucially, the success of this methodology relies entirely on
the correctness of the selection function D. The attacker must
precisely know which cryptographic primitive (e.g., AES S-
Box vs. PRESENT S-Box) is executing to accurately predict
the intermediate bit j. If the target logic is obfuscated such
that the attacker employs a selection function derived from
a decoy S-Box, the predictions will fail to correlate with the
physical power leakage, rendering the attack futile.

Ak (7)
(1)

III. DECEPTIVE DESIGN METHODOLOGIES

To realize the paradigm of mimetic deception, we propose
and evaluate three distinct methodologies. Each approach aims
to synthesize a circuit that performs a target function (F')
while mimicking the structural topology of a decoy appear-
ance circuit (A). However, they differ fundamentally in their
algorithmic foundations — ranging from heuristic graph theory
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to generative machine learning — and their respective trade-offs
in scalability, overhead, and representation.

A. IP Camouflage

IP Camouflage is the foundational generative approach for
mimetic deception [6]. Unlike heuristic matching, this method
utilizes deep learning to capture and manipulate the latent
functional representations of circuits.

The workflow employs a novel And-Inverter Graph Varia-
tional Autoencoder (AIG-VAE). The encoder utilizes an asyn-
chronous message-passing mechanism and Gated Recurrent
Units (GRUs) to encode the structural and functional depen-
dencies of an AIG into a probabilistic latent space defined by a
mean  and variance o [6]. To generate a deceptive circuit, the
model interpolates between the latent vector of the functional
circuit (Zr) and the appearance circuit (Z 4) using a proportion
factor p € [0,1]:

Zg = (1 —p)Zp + pZa 2

The decoder then reconstructs a “blended” circuit from Zg-
by predicting node types, connections, and inverter place-
ments [6].

Because the generative output is a probabilistic approxima-
tion, this method requires a critical “Post-Generation Rectifica-
tion” phase to restore logical integrity. In this step, the blended
circuit is compared against the target function F'. Discrepan-
cies are systematically resolved by inserting specialized covert
gates:

o Fake Inverters (FI) and Fake Buffers (FB): Compo-

nents that appear as standard inverters/buffers but func-
tion as constant logic or wires [0].
o Universal Transmitters (UT): A flexible component that
appears as a NAND gate but can be configured to act as
a buffer, inverter, or constant source [6].
While this approach effectively creates function-appearance
mismatches, the reliance on post-generation fixes introduces
area overhead and limits the method’s scalability to smaller
logic cones (approx. 200 nodes) [6].

B. Graph Matching

The Graph Matching method addresses the representation
mismatch inherent in AIG-based approaches [[6] by operating
directly on standard logic gate netlists [7]. Unlike AIGs, which
decompose logic into abstract AND/NOT nodes, this method
processes the “real logic” representation found in standard
Process Design Kits (PDKSs). This ensures that the generated
deceptive circuit is composed of standard cells (e.g., NAND,
NOR, XOR) that are directly compatible with industrial design
flows and standard reverse engineering tools.

The core of this method is a layer-by-layer greedy heuristic
that maps nodes from the appearance graph G 4 to the func-
tional graph G [7]]. The algorithm proceeds in three distinct
phases:

1) Graph Levelization: Both the functional (Gr) and ap-

pearance (G 4) graphs are independently levelized using
a topological sort (Kahn’s algorithm). This assigns every

node to a specific depth layer, establishing a structured
basis for matching [7].

2) Bipartite Matching: The algorithm iterates through the
circuit depth from inputs to outputs. At each layer k,
it solves a minimum-cost bipartite matching problem to
map nodes from Layery (G ) to Layery(GF) using the
Hungarian Algorithm. This ensures a globally optimal
assignment for that specific layer before propagating
constraints to the next [[7]].

3) Asymmetric Cost Optimization: The matching deci-
sions are driven by a specialized cost function designed
to enforce deception. The cost C};; of matching an
appearance node a; to a functional node f; is the sum
of two components:

e Node Cost: A penalty is derived from the difficulty
of camouflaging the logic function. For example,
hiding a simple buffer or inverter within a complex
NAND/NOR gate incurs zero cost, as supported by
Covert Gate technology. However, matching incom-
patible logic types incurs a high penalty [7]].

o Connection Cost: This enforces a structural con-
tainment constraint based on the matching from the
previous layer (Mp,.c,,). A high penalty is assigned
if a connection exists in the functional graph G
but the corresponding mapped nodes in G4 are
not connected. This effectively encourages the con-
nectivity of G to be a structural subset of G4,
allowing the functional wires to be "hidden” within
the appearance topology [/7].

C. DNAS-Based Gate Array Optimization

To overcome the scalability limitations of the AIG-VAE and
the representation constraints of standard AIGs, we introduced
the DNAS-NAND Gate Array method [7]]. This approach
leverages Differentiable Neural Architecture Search (DNAS)
to synthesize an end-to-end deceptive circuit without the need
for post-generation rectification.

We proposed a unified model named “SelectorTNet”, which
extends the T-Net [20] architecture to learn two distinct logic
functions simultaneously. The network incorporates a global
selector variable p that governs the effective parameters 0, ¢
of the network during the forward pass:

aeff =D - OFunctional + (1 - p) : oAppearance 3)

When p = 1, the network parameters adapt to synthesize the
functional circuit; when p = 0, they adapt to the appearance
circuit. The use of Gumbel-Softmax sampling ensures the
selection of connections remains differentiable [7].

The training is guided by a composite loss function that
jointly optimizes for correctness and mimicry:

o Hardness-Aware Loss: Ensures 100% logical correct-
ness for both F' (at p = 1) and A (at p = 0) by penalizing
“hard” examples where the network’s prediction diverges
from the truth table [7]].
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Fig. 2. Overview of the three proposed deceptive design methodologies: (a) Graph Matching using standard gates, (b) IP Camouflage using AIG-VAE

interpolation, and (c¢) DNAS-Based NAND Array optimization.

TABLE I
COMPARISON OF DECEPTIVE DESIGN METHODOLOGIES

Feature Graph Matching IP Camouflage DNAS-NAND
Core Algo. Greedy Heuristic AIG-VAE DNAS
Logic Basis Standard Gates AIGs NAND Array
Scalability High Low (< 200 nodes) High
Rectification Not Required Required Not Required
Formal Eq. Guaranteed Guaranteed Verified ex-post
Target Arithmetic/Cipher Arithmetic/Cipher Arithmetic

o Inner-Architecture Regularized Loss: Penalizes long-
distance skip connections to ensure the synthesized netlist
is physically realizable and efficient [[7].

Cryptic Loss (Connection Containment): This is the
core mechanism for deception. It penalizes any connec-
tion in the functional mode (p = 1) that exhibits a
stronger activation magnitude than its counterpart in the
appearance mode (p = 0). The loss is defined as:

Losscryptic = max(O, 01 — 00)

“4)

This constraint effectively forces the functional circuit to be
“hidden” within the wiring of the appearance circuit. The
result is a single NAND-gate array that satisfies the functional
requirements while structurally appearing as the decoy, achiev-
ing high scalability and ultra-low overhead [7]].

D. Summary of Methodologies

Table |I] summarizes the key characteristics of the three
proposed methods. Graph Matching excels in formal correct-
ness and standard representation, but offers moderate overhead
due to strict matching constraints. I[P Camouflage pioneered
the generative approach but is limited by the rectification
bottleneck. The DNAS-NAND Array offers the best scalability
and PPA efficiency, albeit with a homogeneous NAND-only
representation and difficulty in accurate representation of all
functions such as ciphers.

In this work, we target the S-Boxes of varying Ciphers,
distinct for their high non-linearity. Although test-vector based
synthesis [7]], [20]], [21] is efficient for arithmetic circuits, it
struggles to encompass the complex behavior of S-Boxes with-
out incurring unacceptable hardware costs. As demonstrated

Side-Channel Resilience: Impact of Model Mismatch on Key Recovery
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Fig. 3. Evaluation of DPA Resilience under Mimetic Deception. The plot
compares the Guessing Entropy (GE) of a target S-Box against an attacker
using the correct power model (Blue/Baseline) versus an incorrect model
induced by deception (Green/Deceptive). While the baseline attack rapidly
converges to the correct key (low entropy) within 2,000 traces, the deceptive
design maintains high entropy even after 32,000 traces, preventing successful
key recovery. The red arrow indicates the DPA Resilience Score, quantifying
the sustained protective gap achieved by forcing a statistical model mismatch.

in [22f], the number of neurons required to approximate a func-
tion grows exponentially with its number of oscillations. For
highly non-linear S-Boxes, this theoretical bound manifests
as a massive area overhead, rendering standard learning-based
synthesis ineffective.

IV. EXPERIMENTS

We evaluate the efficacy of the proposed mimetic deception
methodologies, IP Camouflage (AIG) and Graph Matching
(GM), against two primary threats: automated reverse engi-
neering via Graph Neural Networks (GNNs) and recovering
secret key by Differential Power Analysis (DPA).

A. Experiment Setup & Scope

Our experiments target the highly non-linear Substitution
Boxes (S-Boxes) of cryptographic primitives, specifically
PRESENT (4-bit), DES (6-bit to 4-bit), and AES (8-bit).
Synthesis and Attack: All designs were camouflaged, mod-
eled and synthesized using SAED 90nm Cell Library. GNN-
based structural analysis was performed using a state-of-the-art
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TABLE 11
COMPARISON OF DECEPTION METRICS AND OVERHEAD: IP CAMOUFLAGE (AIG) VS. GRAPH MATCHING (GM)

B 11
e . . 1. 2
e 1 S . B 31 B L

Note: F' — A denotes Functional Circuit disguised as Appearance Circuit. *Avg’ represents the mean across all 8 S-Box variants (S1 — S8).
Score_GNNRE ’co’ indicates the classifier failed to converge or produced random guess equivalent results. In best scenario, Rankr;qden = 0.5.

GNN-RE classifier [16]. Side-channel resilience was evaluated
using a Differential Power Analysis (DPA) attack framework.

Exclusion of DNAS-NAND Method: While intro-
duced the DNAS-NAND Gate Array as a scalable candidate
for arithmetic circuits, we exclude it from this experimental
evaluation of S-Boxes. As theoretically argued in
emulating highly non-linear functions (like crypto-
graphic S-Boxes) with a shallow neural-based synthesis model
requires a prohibitively large number of neurons to capture the
high-frequency oscillations. Preliminary trials confirmed that
trying to synthesize these S-Boxes via DNAS resulted in area
overhead exceeding 10X, rendering the method impractical for
cryptographic primitives compared to AIG and GM.

B. Side-Channel Resilience Analysis

To quantify the mimetic deception effect on side-channel
security, we disguised a PRESENT S-Box to structurally
appear as a DES S-Box. We then performed a DPA attack
assuming the adversary relies on the visual appearance to
select the power model. plots the Guessing Entropy
(GE) defined as the expected rank of the secret key against
the number of power traces (up to 32k).

o Baseline (Correct Model): When the attacker uses the
correct power model (Blue lines), the attack succeeds
rapidly. The guessing entropy drops logarithmically, ap-
proaching ~ 2.2 bits (rank < 5) with 32k traces,
indicating the key is effectively recovered.

o Deceptive (Incorrect Model): When the attacker is
misled into using the model of the appearance circuit
(Green lines), the attack fails to converge. Even with 32k
traces, the guessing entropy remains high (= 3.4 bits),
meaning the correct key remains hidden among a large
pool of candidates.

C. Comparative Analysis: AIG vs. GM

In this section, we evaluate the performance of the proposed
methods using two novel security metrics designed to quantify
the effectiveness of mimetic deception in both the side-channel
and structural domains.

1) Side-Channel Resilience (DPA Score): To measure the
“protective gap” created by the function-appearance mismatch
as shown in we define the DPA Resilience Score as

the normalized divergence in key ranking between the correct
and incorrect power models. It is calculated as:

Rankdisguise - Rankleak

(&)

Scoreppa =
Rank oz

where Rankjeqr is the final rank of the secret key under
the correct model (baseline), Rankgisguise 1S the rank under
the deceptive model, and Rank,,q, is the size of the key
hypothesis space (e.g., 64 for DES, 256 for AES).

Ideally, this score approaches 0.5. This theoretical maxi-
mum is achieved when the baseline attack succeeds perfectly
(Rankjeqr =~ 0) while the deceptive attack forces the adver-
sary into a state of random guessing, where the key rank settles
at the statistical median (Rankg;sguise = 0.5 - Rankyqq). A
score of 0.5 indicates the key is hidden in a “middle ground,”
indistinguishable from noise.

As shown in Table [[I, both methods achieve scores consis-
tently in the range of 0.38 — 0.47. This confirms that regardless
of the synthesis method (Generative AIG or Heuristic GM), the
topological deception successfully masks the leakage, keeping
the key rank high and preventing convergence.

2) Structural Deception (GNN Score): To quantify re-
silience against automated structural analysis, we utilize the
GNN Deception Score [7] as defined in Eq. (3):

Flmimicry - F]-empose
Flewpose

(6)

Scoregnn =
where F'1.,,,sc measures the accuracy of the GNN in identi-
fying the hidden functional logic, and F'1,,;ycry measures its
success in misclassifying the logic as the decoy appearance. A
higher score indicates that the tool is significantly more likely

to be misled by the outer topology (A) than to uncover the
inner functionality (F).

o IP Camouflage (AIG) demonstrated peak performance,
achieving “Infinite” scores in several DES—AES test
cases. This occurs as F'lcgp0se — 0, representing total
obfuscation where the GNN fails to identify the func-
tional logic entirely.

¢ Graph Matching (GM) yielded consistent high scores
(e.g., = 84.6 for DES—AES), proving that standard-gate
mapping effectively poisons the structural features relied
upon by RE classifiers.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. Award # W911NF-19-1-0102.



3) Overhead and Fidelity Trade-offs: We evaluate PPA
metrics normalized against the Appearance Circuit (A) to
quantify the deviation from the target topology. A value of
1.0x represents ideal mimicry where the deceptive circuit is
physically indistinguishable from the decoy.

o IP Camouflage (AIG) demonstrates superior density,
maintaining an area profile near-identical to the target
(1.02 x —1.12x). This efficiency stems from the AIG-
VAE’s latent-space interpolation, which naturally gener-
ates compact structures.

« Graph Matching (GM) incurs slightly higher deviations
(1.14x Area, 1.25x Power) due to the strict bipartite
matching constraints. To guarantee formal equivalence
using standard gates, GM often requires the insertion
of additional dummy chains (covert gates [3]]) to satisfy
the connectivity requirements of the appearance graph,
resulting in a slight bloating of the power footprint.

V. CONCLUSION

This work presents a comprehensive evaluation of “mimetic
deception,” a defensive paradigm that decouples a circuit’s
logical function from its physical topology to thwart both
reverse engineering and side-channel analysis. By disguising
the S-Boxes of vulnerable ciphers (e.g., PRESENT, DES) to
structurally mimic robust or unrelated primitives (e.g., AES),
we successfully mislead the automated toolchains used by
adversaries.

Our experimental results validate two critical defensive
capabilities. First, we demonstrated that structural deception
breaks the fundamental assumption of DPA. By coercing the
attacker into selecting an incorrect power model, the correla-
tion peaks required for key recovery are suppressed, yielding a
DPA Resilience Score of ~ 0.45 (near the theoretical ideal of
random guessing). Second, we showed that GNN classifiers are
effectively poisoned by the deceptive topology, misclassifying
functional logic with high confidence.

Comparison of the proposed methodologies reveals a dis-
tinct trade-off: while IP Camouflage (AIG) offers superior
area efficiency and maximum structural obfuscation, Graph
Matching (GM) provides a formally equivalent, standard-cell
compliant alternative suitable for rigorous design flows. Ulti-
mately, these techniques establish a new frontier in hardware
security, where protection is achieved not just by hiding the
logic, but by actively lying about it.
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