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Abstract—Federated Learning (FL) is a promising approach
for multiparty collaboration as a privacy-preserving technique
in hardware assurance, but its security against adversaries
with domain-specific knowledge is underexplored. This paper
demonstrates a critical vulnerability where available standard
cell library layouts (SCLL) can be exploited to compromise the
privacy of sensitive integrated circuit (IC) training data. We
introduce DECIFR, a novel two-stage Membership Inference
Attack (MIA) that requires no auxiliary dataset. The attack
employs a guided Gradient Inversion Attack (GIA) to reconstruct
a client’s training images from intercepted model updates. Our
findings reveal that the fidelity of these reconstructions directly
correlates with membership status, allowing an adversary to
reliably distinguish members from non-members based on image
quality. This work exposes a practical threat that overcomes the
limitations of conventional attacks and underscores that standard
FL protocols are insufficient for securing domains with extensive
knowledge. We conclude that robust defenses are essential for
the secure application of FL in hardware assurance.

I. INTRODUCTION

The globalized integrated circuit (IC) supply chain faces
serious security threats such as hardware Trojans, IP piracy,
IC counterfeiting, and IC overproduction [1], making hardware
assurance a national priority as emphasized in the CHIPS Act
[2]. Deep learning models offer a powerful tool for automating
security analysis, but they are hampered by a critical bottle-
neck: the slow and high cost acquisition of specialized SEM
image data required for training.

Federated Learning (FL) emerges as a promising solution,
allowing organizations to collaboratively train models without
sharing sensitive raw data. Despite its privacy-preserving de-
sign, FL remains vulnerable to attacks such as the membership
inference attack (MIA), which determines if a specific data
sample was in the training set [3], [4]. However, existing
MIAs are often impractical in FL environments, as they require
auxiliary datasets that a central server would not possess.

To address this gap, we introduce DECIFR, a novel
MIA methodology targeting FL-trained Scanning Electron
Microscopy (SEM) image segmentation models used for hard-
ware assurance. Our key insight is that an adversary can
leverage standard cell library layouts (SCLLs), which are
accessible under NDA, to guide a gradient inversion attack
(GIA). By intercepting a client’s FL model update and using
SCLLs as dummy labels in the GIA, DECIFR reconstructs
the original training image. We hypothesize that an adver-
sary can exploit this reconstruction process, as true training

members will rebuild with markedly higher fidelity. This
quality difference allows an attacker to reliably distinguish
members from non-members. This work exposes a critical
privacy vulnerability in the application of FL to hardware
assurance and underscores the nuanced challenges of achieving
robust hardware assurance.

Critically, membership inference in this domain poses a
systemic threat by revealing not just data presence, but the
underlying hardware characteristics (e.g., node or layer type)
of the training set. This leakage of hardware-specific mem-
bership information acts as a critical enabler for physical
attacks, as it provides additional information to accelerates
reverse engineering [5], facilitates the identification of design
weaknesses [6] to launch non-invasive attacks, and streamlines
IP piracy [7]. We make the following contributions:

• Novel Data-Free Attack: We propose the first data-free
MIA for FL segmentation models, utilizing SCLLs to
guide Gradient Inversion Attacks (GIA) without requiring
private datasets.

• Hardware-Specific Inference: We demonstrate that ad-
versaries can infer specific hardware traits (e.g., layers,
technology nodes) by analyzing differential reconstruc-
tion success using SCLL priors.

• Reconstruction-Based Detection: We validate recon-
struction fidelity as an effective metric for distinguishing
members from non-members in hardware assurance.

II. BACKGROUND

This section reviews the core concepts of FL and defines
MIAs within this specific context.

A. Federated Learning (FL)

Federated Learning (FL) is a distributed framework that
enables multiple entities to jointly train a global model while
ensuring that their raw data remains local and private [8]. The
FL protocol typically executes in iterative rounds: a central
server distributes a global model, clients train it locally on
private data, and then return only model updates to the server
for aggregation [9].

Common protocols include Federated Stochastic Gradient
Descent (FedSGD) and Federated Averaging (FedAVG) [10].
While FedSGD transmits gradients directly, FedAVG requires
clients to train for multiple epochs and share updated weights.
Although FedAVG avoids direct gradient sharing, an adver-
sary can still perform a Gradient Inversion Attack (GIA) by
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estimating gradients from the difference between the global
model weights before and after local training. This estimation
is the vulnerability exploited by our proposed attack.

B. Membership Inference Attacks (MIAs)
A Membership Inference Attack (MIA) is a privacy vi-

olation where an adversary determines if a specific data
sample was part of a model’s training set. In the context of
hardware assurance, this vulnerability extends to the exposure
of sensitive Intellectual Property (IP). For instance, consider a
model trained on a dataset of Scanning Electron Microscopy
(SEM) images. An adversary could probe this model by
submitting distinct inputs, such as images of a 32nm metal
layer versus a 32nm diffusion layer. If the model predicts
the 32nm metal layer with disproportionately high confidence,
the attacker can infer that this specific structure was likely
included in the training set. Furthermore, by systematically
testing various images from a known Standard Cell Library
(SCL), an adversary can determine if the model was trained
using images from that specific, proprietary Process Design
Kit (PDK).

Pioneering research on MIAs proposed the shadow training
technique [3], where an attacker trains surrogate models on
“shadow datasets” drawn from the same distribution as the
victim’s data. In the FL context, MIAs are broadly categorized
into update-based and trend-based methods [11].

• Update-based attacks leverage the exchanged gradients
or parameters. Specifically, these methods operate by ana-
lyzing the raw gradients and their temporal differences, or
by applying shadow training techniques to approximate
the target model’s parameters in the federated environ-
ment. Early works like [12] require access to partial
member data, while others exploit non-zero gradients
in specific layers [13] or calculate gradient differences
between rounds [14].

• Trend-based attacks infer membership by tracking met-
rics over the learning process. These techniques rely
on analyzing the historical trajectory of indicators, such
as prediction confidence or loss, to detect distributional
differences between members and non-members. Recent
approaches like CS-MIA [15] or data poisoning methods
[16] effectively infer membership but often require the
adversary to actively tamper with the training process or
possess auxiliary datasets.

Crucially, most existing FL attacks assume the attacker has
access to auxiliary data similar to the victim’s or can actively
poison the model. These assumptions are often impractical in
hardware assurance, where high-quality domain data is scarce
and proprietary. Our work addresses this gap by proposing a
data-free attack that relies only on design knowledge (SCLLs).

III. METHODOLOGY

In this study, we propose DECIFR, a novel MIA technique
tailored for the FL environment. Unlike traditional attacks,
DECIFR infers the presence of sensitive training data directly
from model updates without relying on any auxiliary data from
the target victim. Our experimental pipeline begins with a

standard FL protocol where clients train a global segmentation
model. As illustrated in Fig. 1, the attack itself launches from
the intercepted model updates. In this first attack phase, an
adversary performs a guided Gradient Inversion Attack (GIA)
using Standard Cell Library Layouts (SCLLs) to reconstruct
potential private training images from the updates. This is fol-
lowed by the Membership Inference phase, where the fidelity
of these reconstructions is analyzed to definitively determine if
a specific hardware characteristic, such as a technology node
or layer type, was present in the client’s training data.

A. Dataset and Environment Setup

To evaluate our approach, we curated two distinct datasets
of Standard Cell Library Layouts (SCLLs) derived from the
32nm and 90nm technology nodes within Synopsys’ Open
Educational Design Kit (SAED). These datasets specifically
isolate metal and diffusion layers. We applied a whitelist filter-
ing process to extract a core set of logic gates (AND, NAND,
OR, NOR, XOR, and XNOR) and essential supplementary
cells (e.g., inverters, buffers), selecting only those that satisfied
specific size constraints.

For the semantic segmentation task, we employed the
REFICS1 tool [17] to generate synthetic dataset of 141 SEM
images and their corresponding ground-truth masks. The syn-
thesis parameters were configured with a shot noise level of
20 and a dwelling time of 10 µsec/pixel to simulate realistic
imaging conditions. Pixel intensity distributions were set with
background and foreground means of 75 and 135, respectively,
and a standard deviation of 20. All images were resized
to a resolution of 256×256 pixels. The segmentation model
employs a 16-layer U-Net generator architecture (≈54M pa-
rameters) adapted from Pix2Pix [18]. The encoder utilizes 8
downsampling blocks with filter counts progressively increas-
ing from 64 to 512, while the decoder utilizes 7 upsampling
blocks with skip connections to recover spatial resolution. All
experiments were executed on a high-performance computing
node equipped with an AMD EPYC ROME CPU (32GB
RAM) and an NVIDIA B200 GPU (180GB vRAM).

B. Threat Model

We adopt an “honest-but-curious” threat model, where a
participant (e.g., the central server) attempts to infer sensitive
IP while strictly adhering to the FL protocol. This passive
adversary monitors the training process but does not tamper
with the model parameters or the aggregation process.

• Observable Information: The adversary can access to
model updates, such as weights or gradients, but lacks of
local hyperparameters like the learning rate η.

• No Auxiliary Data: Unlike conventional MIAs, DECIFR
operates without requiring a auxiliary dataset from the
victim’s distribution.

• Domain Knowledge: The adversary possesses a refer-
ence library of standard SCLLs, which can be obtained
from PDKs.

1Link: https://trust-hub.org/#/data/refics
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C. Phase 1: Federated Learning

We simulated a FL environment for image segmentation
consisting of a server and two clients, each possessing 50
image-mask pairs. A global U-Net [19] model was trained
via the FedAvg algorithm over 200 communication rounds. In
each round, clients executed 2 local epochs with a batch size
of 10 and a learning rate of 0.01.

D. Phase 2: Gradient Inversion

1) Gradient Extraction: The attack begins at a target round
(e.g., Round 200) by intercepting the client’s update. Using the
global weights (Wprev) and the received update (Wcurr), the
adversary derives the aggregated gradients (∇L):

∇L =
Wprev −Wcurr

η
(1)

While we utilize a fixed learning rate (η) for experimental con-
sistency, a sophisticated adversary could refine this parameter
via grid search, selecting the η that yields the most plausible
reconstruction.

2) Reconstruction via Guided GIA: DECIFR boosts the
GIA by using SCLLs as fixed dummy labels (y′). The
adversary performs optimization twice: once guided by a
metal SCLL (y′metal) and once by a diffusion SCLL (y′diff ),
iteratively updating a dummy image (x′) to minimize the
composite loss function Ltotal:

Ltotal = Lgrad + λtvLtv − λdummyLdummy (2)

The core Gradient Matching Loss (Lgrad) enforces the dummy
to match target gradients using a balanced mix (α = 0.5) of
Mean Squared Error (MSE) and Cosine Similarity (CS):

Lgrad = α · MSE(∇Ldummy,∇Ltarget)

+ (1− α) · CS(∇Ldummy,∇Ltarget) (3)

We apply Total Variation regularization (Ltv) with λtv =
0.001. Uniquely, we introduce a negative Forward Pass Loss
(−Ldummy), which penalizes the optimizer for merely fitting
the fixed label. This constraint forces reliance on gradient
matching, which is critical for recovering complex geometries
like 32nm metal layers.

E. Phase 3: Membership Inference

The final phase determines membership based on recon-
struction quality.

1) Post-Processing: The raw reconstructions (x′
metal,

x′
diff ) are converted to binary masks using a pipeline of

5 × 5 Gaussian blur, Otsu’s thresholding, and morpho-
logical opening/closing.

2) Scoring: A similarity metric (Dice coefficient) is cal-
culated between the binary mask and the corresponding
SCLL.

3) Mean Threshold Attack: We pool all similarity scores
to calculate a global mean threshold T . If a reconstruc-
tion’s score exceeds T , it is classified as a Member;
otherwise, it is a Non-Member.

Fig. 1: The DECIFR Process: From intercepted model updates
to membership inference via guided gradient inversion.

TABLE I: Results for Inter-Layer Dice Scores (at λdummy = 0)

Target Data Guiding SCLL Mean Dice Score

Metal Metal 0.7233
Metal Diffusion 0.5876
Diffusion Diffusion 0.8204
Diffusion Metal 0.7130

IV. RESULTS

This section details the experimental evaluation of FL’s
vulnerability to MIAs via DECIFR. We structure our findings
by first analyzing the primary inter-layer attack (metal vs.
diffusion), followed by an ablation study of the negative
Forward Pass Loss, and concluding with the challenging intra-
layer scenario (32nm vs. 90nm).

A. Analysis of Reconstructed Images

The initial phase of DECIFR reconstructs the target’s train-
ing data through guided GIA. Following our protocol, we
generated two distinct reconstructions for every intercepted
gradient: one anchored by a metal SCLL (x′

metal) and the other
by a diffusion SCLL (x′

diffusion).
We observed a distinct asymmetry in reconstruction fidelity.

For metal layer targets, the quality gap was pronounced: the
member-guided output (x′

metal) achieved high fidelity, whereas
the non-member version (x′

diffusion) was severely degraded.
Conversely, for diffusion layer targets, this visual disparity
narrowed, as both reconstructions retained relatively high
quality. Fig. 2 illustrates representative examples of these
phenomena.

B. Distribution of Similarity Scores

To obtain quantitative metrics, we converted the raw re-
constructions into binary masks using the post-processing
pipeline outlined in Sect. III and computed the Dice similarity
coefficient. The results in Table I validate that post-processed
reconstruction quality serves as a reliable proxy for member-
ship. As shown in Fig. 3, the mean Dice score was markedly
higher when the guiding SCLL matched the specific category
of the target’s private data.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.



Member: Diffusion

Non-Member: Metal

Member: Metal
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Fig. 2: Representative GIA reconstructions illustrating the pronounced quality disparity in the metal-as-member case compared
to the diminished gap in the diffusion-as-member case.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model Score (Dice_Post)

0

1

2

3

4

5

6

7

8

De
ns

ity

Score Distributions for Dice_Post
Non-Members
Members
Threshold = 0.66

(a) Metal Layer as Member

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Model Score (Dice_Post)

0

2

4

6

8

10

12

De
ns

ity

Score Distributions for Dice_Post
Non-Members
Members
Threshold = 0.77

(b) Diffusion Layer as Member

Fig. 3: Dice score distributions for members versus non-
members at λdummy = 0.

C. Membership Inference Performance

We executed the membership inference attack utilizing the
pooled similarity scores. The performance metrics are detailed
in Table II, with corresponding ROC curves displayed in
Fig. 4. Although the attack succeeds in both scenarios, we
observe a notable performance asymmetry: the diffusion layer
yields a near-perfect AUC of 0.9804, surpassing the metal
layer’s AUC of 0.8868. This outcome is counter-intuitive,
given that the raw reconstructions (Fig. 2) for the metal-as-

TABLE II: Metal vs. Diffusion Layers (λdummy = 0)

Member Data Accuracy Precision Recall AUC

Metal Layer 78.00% 0.75 0.84 0.8868
Diffusion Layer 94.00% 0.9783 0.90 0.9804

member scenario visually display a more distinct quality gap.
This discrepancy is likely attributed to a bottleneck in post-
processing, as the intricate structures of the metal layer are
highly susceptible to degradation during standardized blurring
and thresholding. These operations can erode the fine lines
of a high-fidelity metal reconstruction, artificially reducing its
Dice score and limiting the threshold-based separation.

Fig. 4: ROC curves for the MIA on metal vs. diffusion layers.

D. Ablation Study: Impact of Ldummy

The negative Forward Pass loss term (Ldummy) was intro-
duced as a regularizer to force the optimizer to prioritize
gradient matching over fitting the fixed dummy label. Our
results (Table III) reveal that this mechanism is critical for
structurally complex data.

For the complex metal layer, the standard GIA (λdummy = 0)
results in a low AUC of 0.8868 due to the post-processing bot-
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TABLE III: Ablation Study on the FP Loss Term (AUC)

λdummy Metal Layer (Member) Diffusion Layer (Member)

0 (Term Removed) 0.8868 0.9804 (Optimal)
1 0.9376 0.9776
3 0.9720 0.9516
5 0.9752 (Optimal) 0.9228

TABLE IV: MIA Performance on Intra-Layer Datasets

Member Data λdummy Accuracy Precision Recall AUC

32nm Diffusion 0 67.00% 0.6308 0.82 0.6688
32nm Diffusion 5 (Optimal) 93.00% 0.8909 0.98 0.9916
90nm Diffusion 0 (Optimal) 69.00% 0.6610 0.78 0.8072
90nm Diffusion 5 64.00% 0.6207 0.72 0.7100

tleneck described above. However, implementing λdummy = 5
expands the measurable quality margin by disproportionately
corrupting non-member reconstructions (see Fig. 5). This
enhancement raises the AUC to an optimal 0.9752. In contrast,
the simpler diffusion layer inherently possesses a clear gradient
signal, rendering this additional regularization superfluous.
These results strongly demonstrate that the loss term functions
primarily to reinforce the authentic gradient signal during
complex evaluation scenarios.

E. Intra-Layer Attack Performance

We extended our evaluation to the challenging intra-layer
task: distinguishing between 32nm and 90nm diffusion nodes.
The results (Table IV) substantiate our bottleneck hypothesis.
The intricate 32nm node, similar to the metal layer, necessi-
tates λdummy = 5 to reach a peak AUC of 0.9916. Conversely,
the simpler 90nm node achieves optimal performance without
this regularization. These findings confirm that the attack’s
ideal configuration is deterministic, governed by the interplay
between the data’s structural complexity and the constraints
of the post-processing pipeline.

V. DISCUSSION

Our research offers a more nuanced perspective on MIAs
within Federated Learning. We establish that the attack’s
success is highly conditional, driven by the critical interaction
between the intrinsic complexity of the private data and the
evaluation methodology for attack.

A key contribution of this work is the identification of a
post-processing bottleneck within the evaluation pipeline. We
discovered that the conversion of raw reconstructions into
binary masks for scoring unfairly penalizes complex, fine-
grained structures compared to simpler ones. This bottleneck
accounts for the initial underperformance of high-quality
reconstructions (e.g., 32nm metal layers), as the evaluation
metrics failed to accurately reflect their true fidelity.

This insight redefines the role of our loss term, Ldummy, as
a strategic tool to effectively bridge this evaluation gap. By
constraining the optimization to rely strictly on the gradient,
the term induces a degradation in the raw quality of both mem-
ber and non-member outputs. Crucially, this degradation is
disproportionately severe for non-members, which lack a valid
gradient signal to anchor the reconstruction. Consequently,

this disproportionate corruption widens the measurable quality
margin between the classes, facilitating a distinct separation of
scores and significantly enhancing attack success.

VI. FUTURE WORKS

Our findings highlight several compelling directions for
subsequent research, primarily centering on refining the attack
methodology and addressing the challenges found in this study.

1) Refining Evaluation Metrics: The identification of the
post-processing pipeline as a performance bottleneck
is a key insight. Future work should prioritize the
development of advanced evaluation frameworks. Poten-
tial solutions include designing adaptive post-processing
pipelines that automatically modulate parameters in re-
sponse to the estimated complexity of the reconstruction.

2) Autonomous Hyperparameter Tuning: We observed
that the optimal attack configuration, particularly the
λdummy term, is data-dependent. A significant avenue for
future work is the development of auto-tuning mecha-
nisms for this parameter. This would augment the at-
tack’s universality, enabling effective deployment across
diverse datasets without the need for manual calibration
or prior knowledge.

3) Scalability and Real-World Applicability: While our
current experiments utilized a two-client framework,
real-world FL deployments are extensive. To better
approximate realistic threats, subsequent studies should
scale the simulation to involve a larger cohort of clients
and investigate the attack’s performance against more
complex backbones (e.g., Vision Transformers) beyond
the standard CNN-based U-Net used in this study.

4) Assessing Countermeasures: Given the demonstrated
potency of the attack, a vital next step is the com-
prehensive evaluation of defenses. We have categorized
applicable privacy techniques in Table V, noting their
specific utility against our GIA-based MIA in hardware
assurance. Future research should rigorously benchmark
these mechanisms, analyzing the privacy-utility trade-
offs in perturbation methods like Differential Privacy
and Synthetic Data and the computational feasibility of
cryptographic protocols such as Homomorphic Encryp-
tion and Secure Multiparty Computation.

VII. CONCLUSION

In this paper, we expose a critical privacy vulnerability in
Federated Learning, questioning its assumed privacy preser-
vation. We prove that an adversary can successfully achieve
higher success rate of MIA without auxiliary data, overcoming
even a biased evaluation framework.

A primary contribution of DECIFR is the identification of a
significant post-processing bottleneck. We discovered that this
limitation, inherent to reconstruction-based attacks, obscures
actual leakage by penalizing complex data structures. We
resolve this issue by augmenting the attack with a negative
Forward Pass loss term (Ldummy). This term serves as a
conditional amplifier, establishing a clear quality margin by
disproportionately degrading non-member reconstructions.
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Fig. 5: Visual influence of the Ldummy term on metal targets. The quality disparity is visibly amplified at λdummy = 5

Techniques Benefits Drawbacks Examples
Differential
Privacy

Prevents
high-fidelity
reconstruction
(GIA) by
masking gradient
details

Noise degrades
segmentation
precision for
critical layers
(e.g., Metal, Poly,
Via)

DP-SGD on
layout gradients

Synthetic Data Replaces
sensitive IP
(layouts) with
fake data,
rendering
reconstruction
useless

Generative
models may
memorize
sensitive training
samples, leaking
original IP

Training on
GAN-generated
circuit layouts

Secure Multiparty
Computation

Aggregates
updates securely;
prevents access
to individual
gradients
required for GIA

High
communication
overhead for
large layout
datasets and
models

Secure
Aggregation
(SecAgg) of
weights

Homomorphic
Encryption

Gradients remain
encrypted during
aggregation,
blocking
adversary access

Prohibitive
computational
cost for deep
CNNs used in
vision-based
assurance

Fully
Homomorphic
Encryption
(FHE) training

Zero-Knowledge
Proof

Verifies local
training
correctness
without revealing
the gradient
update itself

High
computational
complexity to
generate proofs
for neural
networks

ZK-SNARKs for
update validity

TABLE V: Overview of privacy-preserving techniques against
reconstruction MIAs in hardware assurance.

Ultimately, this discovery represents a profound threat to
FL-based hardware assurance. By inferring specific hardware
metadata (e.g., technology nodes or layers) instead of mere
data points, adversaries can expedite physical threats such as
reverse engineering, side-channel attacks, and fault injection.
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